27 research outputs found
Inferring phylogenies with incomplete data sets: a 5-gene, 567-taxon analysis of angiosperms
<p>Abstract</p> <p>Background</p> <p>Phylogenetic analyses of angiosperm relationships have used only a small percentage of available sequence data, but phylogenetic data matrices often can be augmented with existing data, especially if one allows missing characters. We explore the effects on phylogenetic analyses of adding 378 <it>matK </it>sequences and 240 26S rDNA sequences to the complete 3-gene, 567-taxon angiosperm phylogenetic matrix of Soltis et al.</p> <p>Results</p> <p>We performed maximum likelihood bootstrap analyses of the complete, 3-gene 567-taxon data matrix and the incomplete, 5-gene 567-taxon data matrix. Although the 5-gene matrix has more missing data (27.5%) than the 3-gene data matrix (2.9%), the 5-gene analysis resulted in higher levels of bootstrap support. Within the 567-taxon tree, the increase in support is most evident for relationships among the 170 taxa for which both <it>matK </it>and 26S rDNA sequences were added, and there is little gain in support for relationships among the 119 taxa having neither <it>matK </it>nor 26S rDNA sequences. The 5-gene analysis also places the enigmatic <it>Hydrostachys </it>in Lamiales (BS = 97%) rather than in Cornales (BS = 100% in 3-gene analysis). The placement of <it>Hydrostachys </it>in Lamiales is unprecedented in molecular analyses, but it is consistent with embryological and morphological data.</p> <p>Conclusion</p> <p>Adding available, and often incomplete, sets of sequences to existing data sets can be a fast and inexpensive way to increase support for phylogenetic relationships and produce novel and credible new phylogenetic hypotheses.</p
Multigene Analyses of Monocot Relationships
We present an analysis of supra-familial relationships of monocots based on a combined matrix of nuclear I8S and partial 26S rDNA, plastid atpB, matK, ndhF, and rbcL, and mitochondrial atp1 DNA sequences. Results are highly congruent with previous analyses and provide higher bootstrap support for nearly all relationships than in previously published analyses. Important changes to the results of previous work are a well-supported position of Petrosaviaceae as sister to all monocots above Acorales and Alismatales and much higher support for the commelinid clade. For the first time, the spine of the monocot tree has some bootstrap support, although support for paraphyly of liliids is still only low to moderate (79-82%). Dioscoreales and Pandanales are sister taxa (moderately supported, 87- 92%), and Asparagales are weakly supported (79%) as sister to the commelinids. Analysis of just the four plastid genes reveals that addition of data from the other two genomes contributes to generally better support for most clades, particularly along the spine. A new collection reveals that previous material of Petermannia was misidentified, and now Petermanniaceae should no longer be considered a synonym of Colchicaceae. Arachnitis (Corsiaceae) falls into Liliales, but its exact position is not well supported. Sciaphila (Triuridaceae) falls with Pandanales. Trithuria (Hydatellaceae) falls in Poales near Eriocaulaceae, Mayacaceae, and Xyridaceae, but until a complete set of genes are produced for this taxon, its placement will remain problematic. Within the commelinid clade, Dasypogonaceae are sister to Poales and Arecales sister to the rest of the commelinids, but these relationships are only weakly supported
Angiosperm phylogeny: 17 genes, 640 taxa
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/1/ajb20704-sup-0010.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/2/ajb20704.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/3/ajb20704-sup-0001.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/4/ajb20704-sup-0016.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/5/ajb20704-sup-0017.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/6/ajb20704-sup-0021.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/7/ajb20704-sup-0003.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/8/ajb20704-sup-0002.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/9/ajb20704-sup-0011.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/10/ajb20704-sup-0019.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/11/ajb20704-sup-0015.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/12/ajb20704-sup-0006.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/13/ajb20704-sup-0020.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/14/ajb20704-sup-0013.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/15/ajb20704-sup-0004.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/16/ajb20704-sup-0012.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/17/ajb20704-sup-0005.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/18/ajb20704-sup-0018.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/19/ajb20704-sup-0009.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/20/ajb20704-sup-0014.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/21/ajb20704-sup-0007.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142064/22/ajb20704-sup-0008.pd
Angiosperm Phylogeny: 17 Genes, 640 Taxa
• Premise of the study : Recent analyses employing up to fi ve genes have provided numerous insights into angiosperm phylogeny, but many relationships have remained unresolved or poorly supported. In the hope of improving our understanding of angiosperm phylogeny, we expanded sampling of taxa and genes beyond previous analyses.
• Methods : We conducted two primary analyses based on 640 species representing 330 families. The fi rst included 25 260 aligned base pairs (bp) from 17 genes (representing all three plant genomes, i.e., nucleus, plastid, and mitochondrion). The second included 19 846 aligned bp from 13 genes (representing only the nucleus and plastid).
• Key results : Many important questions of deep-level relationships in the nonmonocot angiosperms have now been resolved with strong support. Amborellaceae, Nymphaeales, and Austrobaileyales are successive sisters to the remaining angiosperms ( Mesangiospermae ), which are resolved into Chloranthales + Magnoliidae as sister to Monocotyledoneae + [Ceratophyllaceae + Eudicotyledoneae ]. Eudicotyledoneae contains a basal grade subtending Gunneridae . Within Gunneridae , Gunnerales are sister to the remainder ( Pentapetalae ), which comprises (1) Superrosidae , consisting of Rosidae (including Vitaceae) and Saxifragales; and (2) Superasteridae , comprising Berberidopsidales, Santalales, Caryophyllales , Asteridae , and, based on this study, Dilleniaceae (although other recent analyses disagree with this placement). Within the major subclades of Pentapetalae , most deep-level relationships are resolved with strong support.
• Conclusions : Our analyses confi rm that with large amounts of sequence data, most deep-level relationships within the angiosperms can be resolved. We anticipate that this well-resolved angiosperm tree will be of broad utility for many areas of biology, including physiology, ecology, paleobiology, and genomics
Systematics of Eleusine Gaertn. (Poaceae: Chloridoideae): Chloroplast DNA and Total Evidence
Volume: 84Start Page: 841End Page: 84