18 research outputs found

    Dynamics of dendritic cell maturation are identified through a novel filtering strategy applied to biological time-course microarray replicates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dendritic cells (DC) play a central role in primary immune responses and become potent stimulators of the adaptive immune response after undergoing the critical process of maturation. Understanding the dynamics of DC maturation would provide key insights into this important process. Time course microarray experiments can provide unique insights into DC maturation dynamics. Replicate experiments are necessary to address the issues of experimental and biological variability. Statistical methods and averaging are often used to identify significant signals. Here a novel strategy for filtering of replicate time course microarray data, which identifies consistent signals between the replicates, is presented and applied to a DC time course microarray experiment.</p> <p>Results</p> <p>The temporal dynamics of DC maturation were studied by stimulating DC with poly(I:C) and following gene expression at 5 time points from 1 to 24 hours. The novel filtering strategy uses standard statistical and fold change techniques, along with the consistency of replicate temporal profiles, to identify those differentially expressed genes that were consistent in two biological replicate experiments. To address the issue of cluster reproducibility a consensus clustering method, which identifies clusters of genes whose expression varies consistently between replicates, was also developed and applied. Analysis of the resulting clusters revealed many known and novel characteristics of DC maturation, such as the up-regulation of specific immune response pathways. Intriguingly, more genes were down-regulated than up-regulated. Results identify a more comprehensive program of down-regulation, including many genes involved in protein synthesis, metabolism, and housekeeping needed for maintenance of cellular integrity and metabolism.</p> <p>Conclusions</p> <p>The new filtering strategy emphasizes the importance of consistent and reproducible results when analyzing microarray data and utilizes consistency between replicate experiments as a criterion in both feature selection and clustering, without averaging or otherwise combining replicate data. Observation of a significant down-regulation program during DC maturation indicates that DC are preparing for cell death and provides a path to better understand the process. This new filtering strategy can be adapted for use in analyzing other large-scale time course data sets with replicates.</p

    Matrix Protein Mutant of Vesicular Stomatitis Virus Stimulates Maturation of Myeloid Dendritic Cells

    No full text
    Matrix (M) protein mutants of vesicular stomatitis virus have recently been used as oncolytic viruses for tumor therapies and are being developed as vaccine vectors for heterologous antigens. Because dendritic cell (DC) maturation is an important correlate of tumor immunosurveillance and vaccine efficacy, we sought to determine the ability of a recombinant M protein mutant virus (rM51R-M virus) to mature DC in vitro. We have previously shown that rM51R-M virus is defective at inhibiting host gene expression in several cell lines compared to its recombinant wild-type counterpart, rwt virus. Therefore, rM51R-M virus allows the expression of genes involved in antiviral responses, such as the type I interferon (IFN) gene. Our results demonstrate that, in contrast to the rwt virus, rM51R-M virus induced the maturation of myeloid DC (mDC) populations, as indicated by an increase in the surface expression of CD40, CD80, and CD86 as well as the secretion of interleukin-12 (IL-12), IL-6, and type I IFN. In addition, mDC infected with rM51R-M virus effectively activated naïve T cells in vitro, whereas rwt virus-infected mDC were defective in antigen presentation. The inability of rwt virus to induce mDC maturation was correlated with the inhibition of host gene expression in rwt virus-infected cells. Our studies also indicated that the production of costimulatory molecules on mDC by rM51R-M virus was dependent on the type I IFN receptor, while maturation induced by this virus was largely independent of MyD88. These data indicate that rM51R-M virus effectively stimulates the maturation of mDC and has the potential to promote effective T-cell responses to vector-expressed antigens, activate DC at tumor sites during therapy, and aid in tumor immunosurveillance and destruction

    Cytoplasmic Entry of Listeria monocytogenes

    No full text

    Dendritic Cells Inhibit the Progression of Listeria monocytogenes Intracellular Infection by Retaining Bacteria in Major Histocompatibility Complex Class II-Rich Phagosomes and by Limiting Cytosolic Growth▿ †

    No full text
    Dendritic cells (DC) provide a suboptimal niche for the growth of Listeria monocytogenes, a facultative intracellular bacterial pathogen of immunocompromised and pregnant hosts. This is due in part to a failure of large numbers of bacteria to escape to the cytosol, an essential step in the intracellular life cycle that is mediated by listeriolysin O (LLO). Here, we demonstrate that wild-type bacteria that failed to enter the cytosol of bone marrow-derived DC were retained in a LAMP2+ compartment. An isogenic L. monocytogenes strain that produces an LLO protein with reduced pore-forming activity had a severe escape and growth phenotype in DC. Few mutant bacteria entered the cytosol in the first 2 h and were instead found in LAMP2+, major histocompatibility complex class II+ (MHC-II+) H2-DM vesicles characteristic of MHC-II antigen loading compartments (MIIC). In contrast, the mutant had a minor phenotype in bone marrow-derived macrophages (BMM) despite the reduced LLO activity. In the first hour, DC phagosomes acidified to a pH that was, on average, half a point higher than that of BMM phagosomes. Unlike BMM, L. monocytogenes growth in DC was minimal after 5 h, and consequently, DC remained viable and matured late in infection. Taken together, the data are consistent with a model in which phagosomal maturation events associated with the acquisition of MHC-II molecules present a suboptimal environment for L. monocytogenes escape to the DC cytosol, possibly by limiting the activity of LLO. This, in combination with an undefined mechanism that controls bacterial growth late in infection, promotes DC survival during the critical maturation response
    corecore