3 research outputs found

    The mGluR5 antagonist MPEP selectively inhibits the onset and maintenance of ethanol self-administration in C57BL/6J mice

    Get PDF
    Many of the biochemical, physiological, and behavioral effects of ethanol are known to be mediated by ionotropic glutamate receptors. Emerging evidence implicates metabotropic glutamate receptors (mGluRs) in the biobehavioral effects of ethanol and other drugs of abuse, but there is little information regarding the role of mGluRs in the reinforcing effects of ethanol

    Gβ Association and Effector Interaction Selectivities of the Divergent Gγ Subunit Gγ 13

    Get PDF
    G gamma(13) is a divergent member of the G gamma subunit family considered to be a component of the gustducin G-protein heterotrimer involved in bitter and sweet taste reception in taste bud cells. G gamma(13) contains a C-terminal asparagine-proline-tryptophan (NPW) tripeptide, a hallmark of RGS protein G gamma-like (GGL) domains which dimerize exclusively with G beta(5) subunits. In this study, we investigated the functional range of G gamma(13) assembly with G beta subunits using multiple assays of G beta association and G beta gamma effector modulation. G gamma(13) was observed to associate with all five G beta subunits (G beta(1-5)) upon co-translation in vitro, as well as function with all five G beta subunits in the modulation of Kir3.1/3.4 (GIRK1/4) potassium and N-type (alpha(1B)) calcium channels. Multiple G beta/G gamma(13) pairings were also functional in cellular assays of phospholipase C (PLC) beta 2 activation and inhibition of G alpha(q)-stimulated PLC beta 1 activity. However, upon cellular co-expression of G gamma(13) with different G beta subunits, only G beta(1)/G gamma(13), G beta(3)/G gamma(13), and G beta(4)/G gamma(13) pairings were found to form stable dimers detectable by co-immunoprecipitation under high-detergent cell lysis conditions. Collectively, these data indicate that G gamma(13) forms functional G beta gamma dimers with a range of G beta subunits. Coupled with our detection of G gamma(13) mRNA in mouse and human brain and retina, these results imply that this divergent G gamma subunit can act in signal transduction pathways other than that dedicated to taste reception in sensory lingual tissue
    corecore