398 research outputs found
High Rate Detection of Volatile Products Using Differential Electrochemical Mass Spectrometry: Combining an Electrode-Coated Membrane with Hydrodynamic Flow in a Wall-Tube Configuration
We present an experimental system that combines differential electrochemical mass spectrometry with hydrodynamic flow consisting of an impinging jet in a wall-tube configuration. This assembly allows simultaneous detection of electrochemical signals along with monitoring of dissolved gas species using differential electrochemical mass spectrometry under well-defined hydrodynamic conditions and over a wide range of mass transfer rates. The working electrode is deposited directly onto a thin, hydrophobic membrane, which also serves as the inlet to the mass spectrometer. This inlet provides extremely rapid mass detection as well as a high flux of products from the electrode surface into the mass spectrometer. The impinging jet is designed in a wall-tube configuration, in which the jet diameter is large compared to the electrode diameter, thus providing uniform and rapid mass transfer conditions over the entirety of the electrode surface. This combination of rapid detection and controllable flow conditions allows a wide range of hydrodynamic conditions to be accessed with simultaneous electrochemical and mass spectrometric detection of dissolved gas species, which is important in the analysis of a range of electrochemical reactions. The capabilities of this configuration are illustrated using a platinum-coated electrode and several electrochemical reactions, including ferrocyanide oxidation, proton reduction, and oxalic acid oxidation
Comparison of high-specific-activity ultratrace 123/131I-MIBG and carrier-added 123/131I-MIBG on efficacy, pharmacokinetics, and tissue distribution
Metaiodobenzylguanidine (MIBG) is an enzymatically stable synthetic analog of norepinephrine that when radiolabled with diagnostic ((123)I) or therapeutic ((131)I) isotopes has been shown to concentrate highly in sympathetically innervated tissues such as the heart and neuroendocrine tumors that possesses high levels of norepinephrine transporter (NET). As the transport of MIBG by NET is a saturable event, the specific activity of the preparation may have dramatic effects on both the efficacy and safety of the radiodiagnostic/radiotherapeutic. Using a solid labeling approach (Ultratrace), noncarrier-added radiolabeled MIBG can be efficiently produced. In this study, specific activities of >1200 mCi/micromol for (123)I and >1600 mCi/micromol for (131)I have been achieved. A series of studies were performed to assess the impact of cold carrier MIBG on the tissue distribution of (123/131)I-MIBG in the conscious rat and on cardiovascular parameters in the conscious instrumented dog. The present series of studies demonstrated that the carrier-free Ultratrace MIBG radiolabeled with either (123)I or (131)I exhibited similar tissue distribution to the carrier-added radiolabeled MIBG in all nontarget tissues. In tissues that express NETs, the higher the specific activity of the preparation the greater will be the radiopharmaceutical uptake. This was reflected by greater efficacy in the mouse neuroblastoma SK-N-BE(2c) xenograft model and less appreciable cardiovascular side-effects in dogs when the high-specific-activity radiopharmaceutical was used. The increased uptake and retention of Ultratrace (123/131)I-MIBG may translate into a superior diagnostic and therapeutic potential. Lastly, care must be taken when administering therapeutic doses of the current carrier-added (131)I-MIBG because of its potential to cause adverse cardiovascular side-effects, nausea, and vomiting
Blobs in Wolf-Rayet Winds: Random Photometric and Polarimetric Variability
Some isolated Wolf-Rayet stars present random variability in their optical
flux and polarization. We make the assumption that such variability is caused
by the presence of regions of enhanced density, i.e. blobs, in their envelopes.
In order to find the physical characteristics of such regions we have modeled
the stellar emission using a Monte Carlo code to treat the radiative transfer
in an inhomogeneous electron scattering envelope. We are able to treat multiple
scattering in the regions of enhanced density as well as in the envelope
itself. The finite sizes of the source and structures in the wind are also
taken into account. Most of the results presented here are based on a parameter
study of models with a single blob. The effects due to multiple blobs in the
envelope are considered to a more limited extent. Our simulations indicate that
the density enhancements must have a large geometric cross section in order to
produce the observed photopolarimetric variability. The sizes must be of the
order of one stellar radius and the blobs must be located near the base of the
envelope. These sizes are the same inferred from the widths of the sub-peaks in
optical emission lines of Wolf-Rayet stars. Other early-type stars show random
polarimetric fluctuations with characteristics similar to those observed in
Wolf-Rayet stars, which may also be interpreted in terms of a clumpy wind.
Although the origin of such structures is still unclear, the same mechanism may
be working in different types of hot stars envelopes to produce such
inhomogeneities.Comment: Accepted to ApJ. 17 pages + 6 figure
Past and projected weather pattern persistence with associated multi-hazards in the British Isles
Hazards such as heatwaves, droughts and floods are often associated with persistent weather patterns. Atmosphere-Ocean General Circulation Models (AOGCMs) are important tools for evaluating projected changes in extreme weather. Here, we demonstrate that 2-day weather pattern persistence, derived from the Lamb Weather Types (LWTs) objective scheme, is a useful concept for both investigating climate risks from multi-hazard events as well as for assessing AOGCM realism. This study evaluates the ability of a Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model sub-ensemble of 10 AOGCMs at reproducing seasonal LWTs persistence and frequencies over the British Isles (BI). Changes in persistence are investigated under two Representative Concentration Pathways (RCP8.5 and RCP4.5) up to 2100. The ensemble broadly replicates historical LWTs persistence observed in reanalyses (1971-2000). Future persistence and frequency of summer anticyclonic LWT are found to increase, implying heightened risk of drought and heatwaves. On the other hand, the cyclonic LWT decreases in autumn suggesting reduced likelihood of flooding and severe gales. During winter, AOGCMs point to increased risk of concurrent fluvial flooding-wind hazards by 2100, however, they also tend to over-estimate such risks when compared to reanalyses. In summer, the strength of the nocturnal Urban Heat Island (UHI) of London could intensify, enhancing the likelihood of combined heatwave-poor air quality events. Further research is needed to explore other multi-hazards in relation to changing weather pattern persistence and how best to communicate such threats to vulnerable communities
Multi-hazard dependencies can increase or decrease risk
In risk analysis, it is recognized that hazards can often combine to worsen their joint impact, but impact data
for a rail network show that hazards can also tend to be mutually exclusive at seasonal timescales. Ignoring this
overestimates worst-case risk, so we therefore champion a broader view of risk from compound hazard
Participation of Glutamate-354 of the CP43 Polypeptide in the Ligation of Manganese and the Binding of Substrate Water in Photosystem II
In the current X-ray crystallographic structural models of photosystem II, Glu354 of the CP43 polypeptide is the only amino acid ligand of the oxygen-evolving Mn4Ca cluster that is not provided by the D1 polypeptide. To further explore the influence of this structurally unique residue on the properties of the Mn4Ca cluster, the CP43-E354Q mutant of the cyanobacterium Synechocystis sp. PCC 6803 was characterized with a variety of biophysical and spectroscopic methods, including polarography, EPR, X-ray absorption, FTIR, and mass spectrometry. The kinetics of oxygen release in the mutant were essentially unchanged from those in wild type. In addition, the oxygen flash yields exhibited normal period four oscillations having normal S state parameters, although the yields were lower, correlating with the mutant's lower steady-state rate (approximately 20% compared to wild type). Experiments conducted with H218O showed that the fast and slow phases of substrate water exchange in CP43-E354Q thylakoid membranes were accelerated 8.5- and 1.8-fold, respectively, in the S3 state compared to wild type. Purified oxygen-evolving CP43-E354Q PSII core complexes exhibited a slightly altered S1 state Mn-EXAFS spectrum, a slightly altered S2 state multiline EPR signal, a substantially altered S 2-minus-S1 FTIR difference spectrum, and an unusually long lifetime for the S2 state (>10 h) in a substantial fraction of reaction centers. In contrast, the S2 state Mn-EXAFS spectrum was nearly indistinguishable from that of wild type. The S2-minus-S 1 FTIR difference spectrum showed alterations throughout the amide and carboxylate stretching regions. Global labeling with 15N and specific labeling with l-[1-13C]alanine revealed that the mutation perturbs both amide II and carboxylate stretching modes and shifts the symmetric carboxylate stretching modes of the α-COO- group of D1-Ala344 (the C-terminus of the D1 polypeptide) to higher frequencies by 3-4 cm -1 in both the S1 and S2 states. The EPR and FTIR data implied that 76-82% of CP43-E354Q PSII centers can achieve the S 2 state and that most of these can achieve the S3 state, but no evidence for advancement beyond the S3 state was observed in the FTIR data, at least not in a majority of PSII centers. Although the X-ray absorption and EPR data showed that the CP43-E354Q mutation only subtly perturbs the structure and spin state of the Mn4Ca cluster in the S 2 state, the FTIR and H218O exchange data show that the mutation strongly influences other properties of the Mn4Ca cluster, altering the response of numerous carboxylate and amide groups to the increased positive charge that develops on the cluster during the S1 to S2 transition and weakening the binding of both substrate water molecules (or water-derived ligands), especially the one that exchanges rapidly in the S3 state. The FTIR data provide evidence that CP43-Glu354 coordinates to the Mn4Ca cluster in the S1 state as a bridging ligand between two metal ions but provide no compelling evidence that this residue changes its coordination mode during the S1 to S 2 transition. The H218O exchange data provide evidence that CP43-Glu354 interacts with the Mn ion that ligates the substrate water molecule (or water-derived ligand) that is in rapid exchange in the S 3 state
The Possibility of Thermal Instability in Early-Type Stars Due to Alfven Waves
It was shown by dos Santos et al. the importance of Alfv\'en waves to explain
the winds of Wolf-Rayet stars. We investigate here the possible importance of
Alfv\'en waves in the creation of inhomogeneities in the winds of early-type
stars. The observed infrared emission (at the base of the wind) of early-type
stars is often larger than expected. The clumping explains this characteristic
in the wind, increasing the mean density and hence the emission measure, making
possible to understand the observed infrared, as well as the observed
enhancement in the blue wing of the line. In this study, we
investigate the formation of these clumps a via thermal instability. The
heat-loss function used, , includes physical processes such as:
emission of (continuous and line) recombination radiation; resonance line
emission excited by electron collisions; thermal bremsstrahlung; Compton
heating and cooling; and damping of Alfv\'en waves. As a result of this
heat-loss function we show the existence of two stable equilibrium regions. The
stable equilibrium region at high temperature is the diffuse medium and at low
temperature the clumps. Using this reasonable heat-loss function, we show that
the two stable equilibrium regions can coexist over a narrow range of pressures
describing the diffuse medium and the clumps.Comment: 21 pages (psfig.sty), 5 figures (included), ApJ accepted. Also
available at http://www.iagusp.usp.br/preprints/preprint.htm
Physical parameters of erupting Luminous Blue Variables: NGC 2363-V1 caught in the act
A quantitative study of the Luminous Blue Variable NGC 2363-V1 in the
Magellanic galaxy NGC 2366 (D = 3.44 Mpc) is presented, based on ultraviolet
and optical HST/STIS spectroscopy. Contemporary WFPC2 and WHT imaging reveals a
modest V-band brightness increase of ~ 0.2 mag per year between 1996 January
and 1997 November, reaching V=17.4 mag, corresponding to Mv=-10.4 mag.
Subsequently, V1 underwent a similar decrease in V-band brightness, together
with a UV brightening of 0.35 mag from 1997 November to 1999 November.
The optical spectrum of V1 is dominated by H emission lines, with Fe II, He I
and Na I also detected. In the ultraviolet, a forest of Fe absorption features
and numerous absorption lines typical of mid-B supergiants are observed. From a
spectral analysis with the non-LTE, line-blanketed code of Hillier & Miller
(1998), we derive stellar parameters of T*=11kK, R*=420Ro, log(L/Lo)=6.35
during 1997 November, and T*=13kK, R*=315Ro, log(L/Lo)=6.4 for 1999 July. The
wind properties of V1 are also exceptional, with Mdot ~ 4.4 x 10e-4 Mo/yr and
300 km/s, allowing for a clumped wind (filling factor = 0.3),
and assuming H/He ~ 4 by number.
The presence of Fe lines in the UV and optical spectrum of V1 permits an
estimate of the heavy elemental abundance of NGC 2363 from our spectral
synthesis. Although some deficiencies remain, allowance for charge exchange
reactions in our calculations supports a SMC-like metallicity, that has
previously been determined for NGC 2363 from nebular oxygen diagnostics.
Considering a variety of possible progenitor stars, V1 has definitely
undergone a giant eruption, with a substantial increase in stellar luminosity,
radius, and almost certainly mass-loss rate.Comment: 29 pages, 10 figures, Submitted to Ap
Non-perturbative dynamics of hot non-Abelian gauge fields: beyond leading log approximation
Many aspects of high-temperature gauge theories, such as the electroweak
baryon number violation rate, color conductivity, and the hard gluon damping
rate, have previously been understood only at leading logarithmic order (that
is, neglecting effects suppressed only by an inverse logarithm of the gauge
coupling). We discuss how to systematically go beyond leading logarithmic order
in the analysis of physical quantities. Specifically, we extend to
next-to-leading-log order (NLLO) the simple leading-log effective theory due to
Bodeker that describes non-perturbative color physics in hot non-Abelian
plasmas. A suitable scaling analysis is used to show that no new operators
enter the effective theory at next-to-leading-log order. However, a NLLO
calculation of the color conductivity is required, and we report the resulting
value. Our NLLO result for the color conductivity can be trivially combined
with previous numerical work by G. Moore to yield a NLLO result for the hot
electroweak baryon number violation rate.Comment: 20 pages, 1 figur
- …