126 research outputs found

    LEP Vacuum in 1998: Overview and Future Perspective

    Get PDF

    Leak detection

    Get PDF

    Mechanical pumps

    Get PDF

    The Influence of Air Exposures and Thermal Treatments on the Secondary Electron Yield of Copper

    Get PDF
    The variation of the secondary electron yield (SEY) of sputter-cleaned OFHC-copper has been studied as a function of air exposure duration at room temperature. After short air exposures of some seconds the maximum SEY (deltaMAX) of clean copper is reduced from 1.3 to less than 1.2, due to the oxidation of the copper surface. Prolonged air exposure increases the SEY steadily until, after about 8 days of atmospheric exposure, deltaMAX is higher than 2.Air exposures at higher temperatures have been found to be effective in reducing the SEY of technical copper surfaces. A 5-minute air exposure of copper at 350°C followed by a 350°C bake-out under vacuum reduces deltaMAX to about 1.05, which is lower than the value of pure copper and that of Cu2O

    The secondary electron yield of air exposed metal surfaces at the example of niobium

    Get PDF
    The secondary electron yield (SEY) variation of atomically clean metal surfaces due to air exposures and during subsequent heat treatments is described with the example of a sputter-deposited Nb thin film. Corresponding variations of the surface chemical composition have been monitored using AES and SSIMS. On the basis of these results and of previously obtained SEY results on metals and metal oxides the origin of the SEY variations is discussed. The SEY increase, which is generally observed during long lasting air exposures of clean metals, is mainly caused by the adsorption of an airborne carbonaceous contamination layer. The estimated value of about 3 for the maximum SEY of this layer is higher than that of all pure metals. Only in some cases the air-formed oxide can contribute to the air exposure induced SEY increase while many oxides have a lower SEY than their parent metals. From the experimental data it can also be excluded that the SEY increase during air exposures is mainly due to an increased secondary electron escape probability

    A vacuum cold bore test section at the CERN ISR

    Get PDF

    The secondary electron yield of TiZr and TiZrV non evaporable getter thin film coatings

    Get PDF
    The secondary electron yield (SEY) of two different non evaporable getter (NEG) samples has been measured 'as received' and after thermal treatment. The investigated NEGs are TiZr and TiZrV thin film coatings of 1 mm thickness, which are sputter deposited onto copper substrates. The maximum SEY dmax of the air exposed TiZr and TiZrV coating decreases from above 2.0 to below 1.1 during a 2 hour heat treatment at 250 °C and 200 °C, respectively. Saturating an activated TiZrV surface under vacuum with the gases typically present in ultra high vacuum systems increases dmax by about 0.1. Changes in elemental surface composition during the applied heat treatments were monitored by Auger electron spectroscopy (AES). After activation carbon, oxygen and chlorine were detected on the NEG surfaces. The potential of AES for detecting the surface modifications which cause the reduction of SE emission during the applied heat treatments is critically discussed

    Origin of Possible Contamination Introduced by a Turbomolecular Pumping System

    Get PDF
    Turbomolecular pumping groups are widely used in accelerators for the pre-evacuation and during the bake-out of the vacuum system. A major requirement for these groups, apart from pumping speed considerations, is the cleanliness of the vacuum produced. In an attempt to clarify this question, a bakeable low-pressure vacuum system has been constructed to allow the direct comparison of the contamination introduced by a turbomolecular pump and by an ideally clean cryopump. This contamination has been checked by the quantitative analysis of the residual gas as well as of the gases desorbed from surfaces under electron bombardment. Contamination by the rotary pump oil is only apparent below 40% of the turbomolecular pump nominal rotation speed. When the pump is stopped, the system is contaminated by heavy hydrocarbons which can be eliminated by a 300°C vacuum bake out

    A Summary of Main Experimental Results Concerning the Secondary Electron Emission of Copper

    Get PDF
    The secondary electron emission of surfaces exposed to the impact of energetic electrons contributes significantly to the electron cloud build-up. For the prediction of the consequences of this effect the measurements of the secondary electron yield carried out at CERN are an important source of information. New experimental results concerning the total secondary electron yield for very low primary electron energy (between 5 eV and 50 eV) will be also given in the case of as received copper. Furthermore the energy distribution of the re-emitted electrons is drastically influenced by the primary electron energy. The ratio of the number of reflected electrons to the total number of re-emitted electrons has been measured and its variation with the primary electron energy will be shown. As a consequence of these new experimental data, a numerical approximation to express the secondary electron yield as a function of the primary electron energy will be given for the low incident electron energy region (E < 50 eV). It has been shown that the decrease of the secondary electron yield due to the electron bombardment could reduce sufficiently the consequences electron cloud effect. To understand further the origin of this decrease, the results of experiments showing the variation of the electron induced desorption yield with the incident electron dose will be compared to the concomitant reduction of the secondary electron yield
    corecore