14 research outputs found

    Bound -state ÎČ- -decay of bare 205 Tl 81+

    Get PDF
    Beta decay into bound electron states of the daughter atom accompanied by the emission of a monochromatic antineutrino, has been predicted by Daudel et al.[1]. However, a noteworthy probability of ÎČb- decay exists only for highly-charged ions, which makes its observation rather difficult

    A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum

    Get PDF
    A robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse 1a. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorities for future work. The synthesis is intended to be a resource for the modelling and glacial geological community

    Star clusters near and far; tracing star formation across cosmic time

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00690-x.Star clusters are fundamental units of stellar feedback and unique tracers of their host galactic properties. In this review, we will first focus on their constituents, i.e.\ detailed insight into their stellar populations and their surrounding ionised, warm, neutral, and molecular gas. We, then, move beyond the Local Group to review star cluster populations at various evolutionary stages, and in diverse galactic environmental conditions accessible in the local Universe. At high redshift, where conditions for cluster formation and evolution are more extreme, we are only able to observe the integrated light of a handful of objects that we believe will become globular clusters. We therefore discuss how numerical and analytical methods, informed by the observed properties of cluster populations in the local Universe, are used to develop sophisticated simulations potentially capable of disentangling the genetic map of galaxy formation and assembly that is carried by globular cluster populations.Peer reviewedFinal Accepted Versio

    New test of modulated electron capture decay of hydrogen-like 142Pm ions: Precision measurement of purely exponential decay

    Get PDF
    An experiment addressing electron capture (EC) decay of hydrogen-like 142Pm60+ions has been conducted at the experimental storage ring (ESR) at GSI. The decay appears to be purely exponential and no modulations were observed. Decay times for about 9000 individual EC decays have been measured by applying the single-ion decay spectroscopy method. Both visually and automatically analysed data can be described by a single exponential decay with decay constants of 0.0126(7)s−1for automatic analysis and 0.0141(7)s−1for manual analysis. If a modulation superimposed on the exponential decay curve is assumed, the best fit gives a modulation amplitude of merely 0.019(15), which is compatible with zero and by 4.9 standard deviations smaller than in the original observation which had an amplitude of 0.23(4)

    GOULD’S BELT TO STARBURST GALAXIES: THE IMF OF EXTREME STAR FORMATION

    No full text
    Recent results indicate the stellar initial mass function is not a strong function of star–forming environment or “initial conditions ” (e.g. Meyer et al. 2000). Some studies suggest that a universal IMF may extend to sub–stellar masses (see however Briceno et al. 2002). Yet most of this work is confined to star–forming environments within 1 kpc of the Sun. In order to probe the universality of the IMF over a wider range of parameter space (metalicity, ambient pressure, magnetic field strength) new techniques are required. We begin by summarizing our approach to deriving the sub–stellar IMF down to the opacity–limit for fragmentation using NGC 1333 as an example. Next, we describe results from simulations using the observed point–spread function of the new 6.5m MMT adaptive optics system and examine the confusion–limited sensitivity to low mass stars in rich star–forming clusters out to 0.5 Mpc. We also present preliminary results from observations with this system of the W51 star–forming complex. Finally, we outline a new technique to estimate the ratio of high to low mass stars in unresolved stellar populations, such as the massive star clusters observed in interacting galaxies (e.g. Mengel et al. 2002). While evidence for variations in the IMF remains inconclusive, new studies are required to rule them out and determine whether or not the IMF is universal over the range of parameter space relevant to star–forming galaxies over cosmic time. 1

    Proton capture on stored radioactive 118^{118}Te ions

    No full text
    International audienceExperimental determination of the cross sections of proton capture on radioactive nuclei is extremely difficult. Therefore, it is of substantial interest for the understanding of the production of the p-nuclei. For the first time, a direct measurement of proton-capture cross sections on stored, radioactive ions became possible in an energy range of interest for nuclear astrophysics. The experiment was performed at the Experimental Storage Ring (ESR) at GSI by making use of a sensitive method to measure (p,Îł) and (p,n) reactions in inverse kinematics. These reaction channels are of high relevance for the nucleosyn-thesis processes in supernovae, which are among the most violent explosions in the universe and are not yet well understood. The cross section of the 118Te(p,Îł) reaction has been measured at energies of 6 MeV/u and 7 MeV/u. The heavy ions interacted with a hydrogen gas jet target. The radiative recombination process of the fully stripped 118Te ions and electrons from the hydrogen target was used as a luminosity monitor. An overview of the experimental method and preliminary results from the ongoing analysis will be presented
    corecore