488 research outputs found
Stable Fermion Bag Solitons in the Massive Gross-Neveu Model: Inverse Scattering Analysis
Formation of fermion bag solitons is an important paradigm in the theory of
hadron structure. We study this phenomenon non-perturbatively in the 1+1
dimensional Massive Gross-Neveu model, in the large limit. We find,
applying inverse scattering techniques, that the extremal static bag
configurations are reflectionless, as in the massless Gross-Neveu model. This
adds to existing results of variational calculations, which used reflectionless
bag profiles as trial configurations. Only reflectionless trial configurations
which support a single pair of charge-conjugate bound states of the associated
Dirac equation were used in those calculations, whereas the results in the
present paper hold for bag configurations which support an arbitrary number of
such pairs. We compute the masses of these multi-bound state solitons, and
prove that only bag configurations which bear a single pair of bound states are
stable. Each one of these configurations gives rise to an O(2N) antisymmetric
tensor multiplet of soliton states, as in the massless Gross-Neveu model.Comment: 10 pages, revtex, no figures; v2: typos corrected, references added;
v3: version accepted for publication in the PRD. referencess added. Some
minor clarifications added at the beginning of section
The Grail theorem prover: Type theory for syntax and semantics
As the name suggests, type-logical grammars are a grammar formalism based on
logic and type theory. From the prespective of grammar design, type-logical
grammars develop the syntactic and semantic aspects of linguistic phenomena
hand-in-hand, letting the desired semantics of an expression inform the
syntactic type and vice versa. Prototypical examples of the successful
application of type-logical grammars to the syntax-semantics interface include
coordination, quantifier scope and extraction.This chapter describes the Grail
theorem prover, a series of tools for designing and testing grammars in various
modern type-logical grammars which functions as a tool . All tools described in
this chapter are freely available
Dose Response for UV-induced Immune Suppression in People of Color: Differences Based on Erythemal Reactivity Rather than Skin Pigmentation ¶ †
Ultraviolet radiation (UVR) is known to suppress immune responses in human subjects. The purpose of this study was to develop dose responses across a broad range of skin pigmentation in order to facilitate risk assessment. UVR was administered using FS 20 bulbs. Skin pigmentation and UVR sensitivity were evaluated using Fitzpatrick classifications, minimal erythemal dose (MED), slope of the erythemal dose response curve (sED), baseline pigmentation and tanning response. To assess immune responses dinitrochlorobenzene (DNCB) was applied to irradiated buttock skin 72 h after irradiation. Two weeks later DNCB was applied to the inside upper arm. Skin thickness was measured before and after challenge. Dose response was modeled (to obtain a regression line) for the entire group of 185 subjects. With the exception of sED none of the above-mentioned pigmentation indicators contributed significantly to variability around the regression line. Thus, differences in sensitivity for multiple skin types based on Fitzpatrick classification or MED were not observed. However, differences in immune sensitivity to UVR were detected between subjects with steep erythemal dose response curves and those with moderate or flat responses. For subjects with steep erythemal responses the dose calculated to suppress the immune response by 50% was 114 mJ/cm 2 . This group included individuals with Fitzpatrick skin types I–V, MED for these subjects ranged from 30 to 80 mJ/cm 2 . The 50% suppression dose for subjects with weak or no erythemal response could not be computed (the dose response was flat). This resistant group included subjects with skin types IV–VI and MED for these subjects ranged from 41 to >105 mJ/cm 2 . This study provides a human dose response for UVR suppression of contact sensitivity that will be useful in risk assessment. It is the first study to provide this information using the FS sun lamp and is the first study to include people of color. The sED appears to be a new variable for identifying sensitive subjects at risk of UVR-induced immune suppression.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71426/1/0031-8655_2001_0740088DRFUII2.0.CO2.pd
On the connection between the number of nodal domains on quantum graphs and the stability of graph partitions
Courant theorem provides an upper bound for the number of nodal domains of
eigenfunctions of a wide class of Laplacian-type operators. In particular, it
holds for generic eigenfunctions of quantum graph. The theorem stipulates that,
after ordering the eigenvalues as a non decreasing sequence, the number of
nodal domains of the -th eigenfunction satisfies . Here,
we provide a new interpretation for the Courant nodal deficiency in the case of quantum graphs. It equals the Morse index --- at a
critical point --- of an energy functional on a suitably defined space of graph
partitions. Thus, the nodal deficiency assumes a previously unknown and
profound meaning --- it is the number of unstable directions in the vicinity of
the critical point corresponding to the -th eigenfunction. To demonstrate
this connection, the space of graph partitions and the energy functional are
defined and the corresponding critical partitions are studied in detail.Comment: 22 pages, 6 figure
Pushdown automata in statistical machine translation
This article describes the use of pushdown automata (PDA) in the context of statistical machine translation and alignment under a synchronous context-free grammar. We use PDAs to compactly represent the space of candidate translations generated by the grammar when applied to an input sentence. General-purpose PDA algorithms for replacement, composition, shortest path, and expansion are presented. We describe HiPDT, a hierarchical phrase-based decoder using the PDA representation and these algorithms. We contrast the complexity of this decoder with a decoder based on a finite state automata representation, showing that PDAs provide a more suitable framework to achieve exact decoding for larger synchronous context-free grammars and smaller language models. We assess this experimentally on a large-scale Chinese-to-English alignment and translation task. In translation, we propose a two-pass decoding strategy involving a weaker language model in the first-pass to address the results of PDA complexity analysis. We study in depth the experimental conditions and tradeoffs in which HiPDT can achieve state-of-the-art performance for large-scale SMT. </jats:p
End-to-End Learning of Driving Models with Surround-View Cameras and Route Planners
For human drivers, having rear and side-view mirrors is vital for safe
driving. They deliver a more complete view of what is happening around the car.
Human drivers also heavily exploit their mental map for navigation.
Nonetheless, several methods have been published that learn driving models with
only a front-facing camera and without a route planner. This lack of
information renders the self-driving task quite intractable. We investigate the
problem in a more realistic setting, which consists of a surround-view camera
system with eight cameras, a route planner, and a CAN bus reader. In
particular, we develop a sensor setup that provides data for a 360-degree view
of the area surrounding the vehicle, the driving route to the destination, and
low-level driving maneuvers (e.g. steering angle and speed) by human drivers.
With such a sensor setup we collect a new driving dataset, covering diverse
driving scenarios and varying weather/illumination conditions. Finally, we
learn a novel driving model by integrating information from the surround-view
cameras and the route planner. Two route planners are exploited: 1) by
representing the planned routes on OpenStreetMap as a stack of GPS coordinates,
and 2) by rendering the planned routes on TomTom Go Mobile and recording the
progression into a video. Our experiments show that: 1) 360-degree
surround-view cameras help avoid failures made with a single front-view camera,
in particular for city driving and intersection scenarios; and 2) route
planners help the driving task significantly, especially for steering angle
prediction.Comment: to be published at ECCV 201
- …