1,565 research outputs found

    External Operators and Anomalous Dimensions in Soft-Collinear Effective Theory

    Full text link
    It has recently been argued that soft-collinear effective theory for processes involving both soft and collinear partons contains a new soft-collinear mode, which can communicate between the soft and collinear sectors of the theory. The formalism incorporating the corresponding fields into the effective Lagrangian is extended to include external current and four-quark operators relevant to weak interactions. An explicit calculation of the anomalous dimensions of these operators reveals that soft-collinear modes are needed for correctly describing the ultraviolet behavior of the effective theory.Comment: 15 pages, 2 figure

    Constraining the Unitarity Triangle with B -> V gamma

    Full text link
    We discuss the exclusive radiative decays BKγB\to K^{*}\gamma, BργB \to\rho\gamma, and BωγB\to\omega\gamma in QCD factorization within the Standard Model. The analysis is based on the heavy-quark limit of QCD. Our results for these decays are complete to next-to-leading order in QCD and to leading order in the heavy-quark limit. Special emphasis is placed on constraining the CKM-unitarity triangle from these observables. We propose a theoretically clean method to determine CKM parameters from the ratio of the BρlνB\to\rho l\nu decay spectrum to the branching fraction of BργB\to\rho\gamma. The method is based on the cancellation of soft hadronic form factors in the large energy limit, which occurs in a suitable region of phase space. The ratio of the BργB\to\rho\gamma and BKγB\to K^{*}\gamma branching fractions determines the side RtR_{t} of the standard unitarity triangle with reduced hadronic uncertainties. The recent Babar bound on B(B0ρ0γ)B(B^0\to\rho^0\gamma) implies Rt<0.81(ξ/1.3)R_t < 0.81 (\xi/1.3), with the limiting uncertainty coming only from the SU(3) breaking form factor ratio ξ\xi. This constraint is already getting competitive with the constraint from BsB_{s}-Bˉs\bar B_{s} mixing. Phenomenological implications from isospin-breaking effects are briefly discussed.Comment: 23 pages, 8 figure

    Rare radiative exclusive B decays in soft-collinear effective theory

    Full text link
    We consider rare radiative B decays such as B -> K^* gamma or B -> rho gamma in soft-collinear effective theory, and show that the decay amplitudes are factorized to all orders in alpha_s and at leading order in Lambda/m_b.By employing two-step matching, we classify the operators for radiative B decays in powers of a small parameter lambda(~ \sqrt{Lambda/m_b}) and obtain the relevant operators to order lambda in SCET_I. These operators are constructed with or without spectator quarks including the four-quark operators contributing to annihilation and W-exchange channels. And we employ SCET_II where the small parameter becomes of order Lambda/m_b, and evolve the operators in order to compute the decay amplitudes for rare radiative decays in soft-collinear effective theory. We show explictly that the contributions from the annihilation channels and the W-exchange channels vanish at leading order in SCET. We present the factorized result for the decay amplitudes in rare radiative B decays at leading order in SCET, and at next-to-leading order in alpha_s.Comment: v2: 31 pages, 11 figures. An appendix is added about the quark mass effects on radiative B decay

    Sudakov Resummation for Subleading SCET Currents and Heavy-to-Light Form Factors

    Full text link
    The hard-scattering contributions to heavy-to-light form factors at large recoil are studied systematically in soft-collinear effective theory (SCET). Large logarithms arising from multiple energy scales are resummed by matching QCD onto SCET in two stages via an intermediate effective theory. Anomalous dimensions in the intermediate theory are computed, and their form is shown to be constrained by conformal symmetry. Renormalization-group evolution equations are solved to give a complete leading-order analysis of the hard-scattering contributions, in which all single and double logarithms are resummed. In two cases, spin-symmetry relations for the soft-overlap contributions to form factors are shown not to be broken at any order in perturbation theory by hard-scattering corrections. One-loop matching calculations in the two effective theories are performed in sample cases, for which the relative importance of renormalization-group evolution and matching corrections is investigated. The asymptotic behavior of Sudakov logarithms appearing in the coefficient functions of the soft-overlap and hard-scattering contributions to form factors is analyzed.Comment: 50 pages, 10 figures; minor corrections, version to appear in JHE

    Magnetic Fields in the 3C 129 Cluster

    Get PDF
    We present multi-frequency VLA observations of the two radio galaxies 3C 129 and 3C 129.1 embedded in a luminous X-ray cluster. These radio observations reveal a substantial difference in the Faraday Rotation Measures (RMs) toward 3C 129.1 at the cluster center and 3C 129 at the cluster periphery. After deriving the density profile from available X-ray data, we find that the RM structure of both radio galaxies can be fit by a tangled cluster magnetic field with strength 6 microGauss extending at least 3 core radii (450 kpc) from the cluster center. The magnetic field makes up a small contribution to the total pressure (5%) in the central regions of the cluster. The radio morphology of 3C 129.1 appears disturbed on the southern side, perhaps by the higher pressure environment. In contrast with earlier claims for the presence of a moderately strong cooling flow in the 3C 129 cluster, our analysis of the X-ray data places a limit on the mass deposition rate from any such flow of <1.2 Msun/yr.Comment: in press at MNRA

    On Power Suppressed Operators and Gauge Invariance in SCET

    Full text link
    The form of collinear gauge invariance for power suppressed operators in the soft-collinear effective theory is discussed. Using a field redefinition we show that it is possible to make any power suppressed ultrasoft-collinear operators invariant under the original leading order gauge transformations. Our manipulations avoid gauge fixing. The Lagrangians to O(lambda^2) are given in terms of these new fields. We then give a simple procedure for constructing power suppressed soft-collinear operators in SCET_II by using an intermediate theory SCET_I.Comment: 15 pages, journal versio

    Constraints on diffuse neutrino background from primordial black holes

    Get PDF
    We calculated the energy spectra and the fluxes of electron neutrino emitted in the process of evaporation of primordial black holes (PBHs) in the early universe. It was assumed that PBHs are formed by a blue power-law spectrum of primordial density fluctuations. We obtained the bounds on the spectral index of density fluctuations assuming validity of the standard picture of gravitational collapse and using the available data of several experiments with atmospheric and solar neutrinos. The comparison of our results with the previous constraints (which had been obtained using diffuse photon background data) shows that such bounds are quite sensitive to an assumed form of the initial PBH mass function.Comment: 18 pages,(with 7 figures

    Black Hole Chromosphere at the LHC

    Full text link
    If the scale of quantum gravity is near a TeV, black holes will be copiously produced at the LHC. In this work we study the main properties of the light descendants of these black holes. We show that the emitted partons are closely spaced outside the horizon, and hence they do not fragment into hadrons in vacuum but more likely into a kind of quark-gluon plasma. Consequently, the thermal emission occurs far from the horizon, at a temperature characteristic of the QCD scale. We analyze the energy spectrum of the particles emerging from the "chromosphere", and find that the hard hadronic jets are almost entirely suppressed. They are replaced by an isotropic distribution of soft photons and hadrons, with hundreds of particles in the GeV range. This provides a new distinctive signature for black hole events at LHC.Comment: Incorporates changes made for the version to be published in Phys. Rev. D. Additional details provided on the effect of the chromosphere in cosmic ray shower

    Mechanism of resonant x-ray magnetic scattering in NiO

    Full text link
    We study the resonant x-ray magnetic scattering (RXMS) around the K edge of Ni in the antiferromagnet NiO, by treating the 4p states of Ni as a band and the 3d states as localized states. We propose a mechanism that the 4p states are coupled to the magnetic order through the intra-atomic Coulomb interaction between the 4p and the 3d states and through the p-d mixing to the 3d states of neighboring Ni atoms. These couplings induce the orbital moment in the 4p band, and thereby give rise to the RXMS intensity at the K edge in the dipolar process. It is found that the spin-orbit interaction in the 4p band has negligibly small contribution to the RXMS intensity. The present model reproduces well the experimental spectra. We also discuss the azimuthal angle dependence of the intensity.Comment: 10 pages (revtex) and 7 postscript figure

    A Comparison of Cognitive Function in Former Rugby Union Players Compared with Former Non-Contact-Sport Players and the Impact of Concussion History

    Get PDF
    Aim: This study investigated differences in cognitive function between former rugby and non-contact-sport players, and assessed the association between concussion history and cognitive function. Methods: Overall, 366 former players (mean ± standard deviation [SD] age 43.3 ± 8.2 years) were recruited from October 2012 to April 2014. Engagement in sport, general health, sports injuries and concussion history, and demographic information were obtained from an online self-report questionnaire. Cognitive functioning was assessed using the online CNS Vital Signs neuropsychological test battery. Cohen’s d effect size statistics were calculated for comparisons across player groups, concussion groups (one or more self-reported concussions versus no concussions) and between those groups with CNS Vital Signs age-matched norms (US norms). Individual differences within groups were represented as SDs. Results: The elite-rugby group (n = 103) performed worse on tests of complex attention, processing speed, executive functioning, and cognitive flexibility than the non-contact-sport group (n = 65), and worse than the community-rugby group (n = 193) on complex attention. The community-rugby group performed worse than the non-contact group on executive functioning and cognitive flexibility. Compared with US norms, all three former player groups performed worse on verbal memory and reaction time; rugby groups performed worse on processing speed, cognitive flexibility and executive functioning; and the community-rugby group performed worse on composite memory. The community-rugby group and non-contact-sport group performed slightly better than US norms on complex attention, as did the elite-rugby group for motor speed. All three player groups had greater individual differences than US norms on composite memory, verbal memory and reaction time. The elite-rugby group had greater individual differences on processing speed and complex attention, and the community-rugby group had greater individual differences on psychomotor speed and motor speed. The average number of concussions recalled per player was greater for elite rugby and community rugby than non-contact sport. Former players who recalled one or more concussions (elite rugby, 85 %; community rugby, 77 %; non-contact sport, 23 %) had worse scores on cognitive flexibility, executive functioning, and complex attention than players who did not recall experiencing a concussion. Conclusions: Past participation in rugby or a history of concussion were associated with small to moderate neurocognitive deficits (as indicated by worse CNS Vital Signs scores) in athletes post retirement from competitive sport
    corecore