1,135 research outputs found
Cosmological Tracking Solutions
A substantial fraction of the energy density of the universe may consist of
quintessence in the form of a slowly-rolling scalar field. Since the energy
density of the scalar field generally decreases more slowly than the matter
energy density, it appears that the ratio of the two densities must be set to a
special, infinitesimal value in the early universe in order to have the two
densities nearly coincide today.
Recently, we introduced the notion of tracker fields to avoid this initial
conditions problem. In the paper, we address the following questions: What is
the general condition to have tracker fields? What is the relation between the
matter energy density and the equation-of-state of the universe imposed by
tracker solutions? And, can tracker solutions explain why quintessence is
becoming important today rather than during the early universe
Dipole and Quadrupole Moments of Mirror Nuclei 8B and 8li
Magnetic dipole and electric quadrupole moments of the mirror nuclei 8Li and
8B are analysed in the framework of the multiparticle shell model by using two
approaches : i) the one-particle spectroscopic factors and ii) the one-particle
fractional parentage coefficients.
These two approaches are compared both each to other and with a microscopic
multicluster model. The one-particle nucleon states are calculated taking into
account the continuum by the method of the expansion of the Sturm - Liouville
functions. The experimental magnetic and quadrupole moments of 8Li and 8Bare
reproduced well by using fractional parentage coefficients technique. The root
mean-square radii and the radial density distributions are obtained for these
nuclei.Comment: 20 pages 1 figur
Spatial Periodicity of Galaxy Number Counts, CMB Anisotropy, and SNIa Hubble Diagram Based on the Universe Accompanied by a Non-Minimally Coupled Scalar Field
We have succeeded in establishing a cosmological model with a non-minimally
coupled scalar field that can account not only for the spatial
periodicity or the {\it picket-fence structure} exhibited by the galaxy -
relation of the 2dF survey but also for the spatial power spectrum of the
cosmic microwave background radiation (CMB) temperature anisotropy observed by
the WMAP satellite. The Hubble diagram of our model also compares well with the
observation of Type Ia supernovae. The scalar field of our model universe
starts from an extremely small value at around the nucleosynthesis epoch,
remains in that state for sufficiently long periods, allowing sufficient time
for the CMB temperature anisotropy to form, and then starts to grow in
magnitude at the redshift of , followed by a damping oscillation
which is required to reproduce the observed picket-fence structure of the
- relation. To realize such behavior of the scalar field, we have found
it necessary to introduce a new form of potential , with being a constant. Through this parameter ,
we can control the epoch at which the scalar field starts growing.Comment: 19 pages, 18 figures, Accepted for publication in Astrophysics &
Space Scienc
Stability analysis of agegraphic dark energy in Brans-Dicke cosmology
Stability analysis of agegraphic dark energy in Brans-Dicke theory is
presented in this paper. We constrain the model parameters with the
observational data and thus the results become broadly consistent with those
expected from experiment. Stability analysis of the model without best fitting
shows that universe may begin from an unstable state passing a saddle point and
finally become stable in future. However, with the best fitted model, There is
no saddle intermediate state. The agegraphic dark energy in the model by itself
exhibits a phantom behavior. However, contribution of cold dark matter on the
effective energy density modifies the state of teh universe from phantom phase
to quintessence one. The statefinder diagnosis also indicates that the universe
leaves an unstable state in the past, passes the LCDM state and finally
approaches the sable state in future.Comment: 15 pages, 12 figure
Optical Hall conductivity of systems with gapped spectral nodes
We calculate the optical Hall conductivity within the Kubo formalism for
systems with gapped spectral nodes, where the latter have a power-law
dispersion with exponent n. The optical conductivity is proportional to n and
there is a characteristic logarithmic singularity as the frequency approaches
the gap energy. The optical Hall conductivity is almost unaffected by thermal
fluctuations and disorder for n=1, whereas disorder has a stronger effect on
transport properties if n=2
Quintessence from Shape Moduli
We show that shape moduli in sub-millimeter extra dimensional scenarios,
addressing the gauge hierarchy problem, can dominate the energy density of the
universe today. In our scenario, the volume of the extra dimensions is
stabilized at a sufficiently high scale to avoid conflicts with nucleosynthesis
and solar-system precision gravity experiments, while the shape moduli remain
light but couple extremely weakly to brane-localized matter and easily avoid
these bounds. Nonlocal effects in the bulk of the extra dimension generate a
potential for the shape moduli. The potential has the right form and order of
magnitude to account for the present day cosmic acceleration, in a way
analogous to models of quintessence as a pseudo Nambu-Goldstone boson.Comment: 8 pages, 1 figur
Flavour Universal Dynamical Electroweak Symmetry Breaking
The top condensate see-saw mechanism of Dobrescu and Hill allows electroweak
symmetry to be broken while deferring the problem of flavour to an electroweak
singlet, massive sector. We provide an extended version of the singlet sector
that naturally accommodates realistic masses for all the standard model
fermions, which play an equal role in breaking electroweak symmetry. The models
result in a relatively light composite Higgs sector with masses typically in
the range of (400-700)~GeV. In more complete models the dynamics will
presumably be driven by a broken gauged family or flavour symmetry group. As an
example of the higher scale dynamics a fully dynamical model of the quark
sector with a GIM mechanism is presented, based on an earlier top condensation
model of King using broken family gauge symmetry interactions (that model was
itself based on a technicolour model of Georgi). The crucial extra ingredient
is a reinterpretation of the condensates that form when several gauge groups
become strong close to the same scale. A related technicolour model of Randall
which naturally includes the leptons too may also be adapted to this scenario.
We discuss the low energy constraints on the massive gauge bosons and scalars
of these models as well as their phenomenology at the TeV scale.Comment: 22 pages, 3 fig
Dynamics of the self-interacting chameleon cosmology
In this article we study the properties of the flat FRW chameleon cosmology
in which the cosmic expansion of the Universe is affected by the chameleon
field and dark energy. In particular, we perform a detailed examination of the
model in the light of numerical analysis. The results illustrate that the
interacting chameleon filed plays an important role in late time universe
acceleration and phantom crossing.Comment: 13 pages, 8 figures, to appear in Astrophysics and Space Sc
Chameleonic Generalized Brans--Dicke model and late-time acceleration
In this paper we consider Chameleonic Generalized Brans--Dicke Cosmology in
the framework of FRW universes. The bouncing solution and phantom crossing is
investigated for the model. Two independent cosmological tests: Cosmological
Redshift Drift (CRD) and distance modulus are applied to test the model with
the observation.Comment: 20 pages, 15 figures, to be published in Astrophys. Space Sci. (2011
- …
