1,107 research outputs found

    Alkali Metal Trihalides: MX ̄ Ion Pair or MX-X Complex?

    Get PDF
    The alkali metal trihalides MX3 (M = Li, Na, K, Rb, and Cs; X = Cl, Br, and I) are systematically studied using coupled-cluster methods. Benchmarks using CCSD(T) against diatomic experimental results suggest satisfactory performance for the weighted core-valence basis sets (new basis sets for K, Rb, and Cs) selected for predicting reliable structures and harmonic vibrational frequencies. An isomer search using the B3LYP functional yields a planar, yet asymmetric T-shaped Cs structure as the global minimum for all MX3 species. Much higher level CCSD(T) computations show a moderate to strong distortion of the X3ˉ anion by the M+ cation in the respective equilibrium geometries. Most obviously, for LiCl3 the two Cl-Cl distances are separated by 0.786 Å. Even for CsI3, the structure least distorted from the M+X3ˉ model, the two I-I distances differ by 0.243 Å. It does not take much energy to distort the parent anions along an asymmetric stretch, so this is no surprise. The normal modes of vibration of the MX3 molecules are in better agreement with matrix isolation experiments than previous calculations. And these normal modes are revealing -- instead of the well-established antisymmetric and symmetric stretches of the “free” X3ˉ anions, relatively localized and mutually-perturbed X-X and M-X stretches are calculated. The suggestion emerges that the MX3 system may be alternatively described as an MX-X2 complex, rather than the M+X3ˉ ion pair. This perspective is supported by bonding analyses showing low electron densities at the bond critical points and natural bond orders between the MX and X2 moieties. The thermochemistry of fragmentations of MX3 to MX + X2 vs. M+ + X3ˉ also supports the alternative viewpoint of the bonding in this class of molecules

    Generator Coordinate Calculations for the Breathing-Mode Giant Monopole Resonance in Relativistic Mean Field Theory

    Get PDF
    The breathing-mode giant monopole resonance (GMR) is studied within the framework of the relativistic mean-field theory using the Generator Coordinate Method (GCM). The constrained incompressibility and the excitation energy of isoscalar giant monopole states are obtained for finite nuclei with various sets of Lagrangian parameters. A comparison is made with the results of nonrelativistic constrained Skyrme Hartree-Fock calculations and with those from Skyrme RPA calculations. In the RMF theory the GCM calculations give a transition density for the breathing mode, which resembles much that obtained from the Skyrme HF+RPA approach and also that from the scaling mode of the GMR. From the systematic study of the breathing-mode as a function of the incompressibility in GCM, it is shown that the GCM succeeds in describing the GMR energies in nuclei and that the empirical breathing-mode energies of heavy nuclei can be reproduced by forces with an incompressibility close to K=300K = 300 MeV in the RMF theory.Comment: 27 pages (Revtex) and 5 figures (available upon request), Preprint MPA-793 (March 1994

    The mobilising effect of political choice

    Get PDF
    Political choice is central to citizens’ participation in elections. Nonetheless, little is known about the individual-level mechanisms that link political choice and turnout. It is argued in this article that turnout decisions are shaped not only by the differences between the parties (party polarisation), but also by the closeness of parties to citizens’ own ideological position (congruence), and that congruence matters more in polarised systems where more is at stake. Analysing cross-national survey data from 80 elections, it is found that both polarisation and congruence have a mobilising effect, but that polarisation moderates the effect of congruence on turnout. To further explore the causal effect of political choice, the arrival of a new radical right-wing party in Germany, the Alternative for Germany (AfD), is leveraged and the findings show that the presence of the AfD had a mobilising effect, especially for citizens with congruent views

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-

    Full text link
    We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi --> D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7 J/Psi events collected with the BESII detector at the BEPC. No excess of signal above background is observed, and 90% confidence level upper limits on the branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi --> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure

    Advances in ab-initio theory of Multiferroics. Materials and mechanisms: modelling and understanding

    Full text link
    Within the broad class of multiferroics (compounds showing a coexistence of magnetism and ferroelectricity), we focus on the subclass of "improper electronic ferroelectrics", i.e. correlated materials where electronic degrees of freedom (such as spin, charge or orbital) drive ferroelectricity. In particular, in spin-induced ferroelectrics, there is not only a {\em coexistence} of the two intriguing magnetic and dipolar orders; rather, there is such an intimate link that one drives the other, suggesting a giant magnetoelectric coupling. Via first-principles approaches based on density functional theory, we review the microscopic mechanisms at the basis of multiferroicity in several compounds, ranging from transition metal oxides to organic multiferroics (MFs) to organic-inorganic hybrids (i.e. metal-organic frameworks, MOFs)Comment: 22 pages, 9 figure

    Search for the Lepton Flavor Violation Processes J/ψJ/\psi \to μτ\mu\tau and eτe\tau

    Full text link
    The lepton flavor violation processes J/ψμτJ/\psi \to \mu\tau and eτe\tau are searched for using a sample of 5.8×107\times 10^7 J/ψJ/\psi events collected with the BESII detector. Zero and one candidate events, consistent with the estimated background, are observed in J/ψμτ,τeνˉeντJ/\psi \to \mu\tau, \tau\to e\bar\nu_e\nu_{\tau} and J/ψeτ,τμνˉμντJ/\psi\to e\tau, \tau\to\mu\bar\nu_{\mu}\nu_{\tau} decays, respectively. Upper limits on the branching ratios are determined to be Br(J/ψμτ)<2.0×106Br(J/\psi\to\mu\tau)<2.0 \times 10^{-6} and Br(J/ψeτ)<8.3×106Br(J/\psi \to e\tau) < 8.3 \times10^{-6} at the 90% confidence level (C.L.).Comment: 9 pages, 2 figure

    Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up

    Get PDF
    Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated
    corecore