4 research outputs found

    An integrated multi-omics approach identifies the landscape of interferon-α-mediated responses of human pancreatic beta cells

    Full text link
    Altres ajuts: This work was supported by grants from Marató TV3 (201624.10 to L.P.). M.R. is supported by an FI Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR) PhD fellowship.Interferon-α (IFNα), a type I interferon, is expressed in the islets of type 1 diabetic individuals, and its expression and signaling are regulated by T1D genetic risk variants and viral infections associated with T1D. We presently characterize human beta cell responses to IFNα by combining ATAC-seq, RNA-seq and proteomics assays. The initial response to IFNα is characterized by chromatin remodeling, followed by changes in transcriptional and translational regulation. IFNα induces changes in alternative splicing (AS) and first exon usage, increasing the diversity of transcripts expressed by the beta cells. This, combined with changes observed on protein modification/degradation, ER stress and MHC class I, may expand antigens presented by beta cells to the immune system. Beta cells also up-regulate the checkpoint proteins PDL1 and HLA-E that may exert a protective role against the autoimmune assault. Data mining of the present multi-omics analysis identifies two compound classes that antagonize IFNα effects on human beta cells

    Silica and other materials as supports in liquid chromatography. Chromatographic tests and their importance for evaluating these supports. Part I

    Full text link
    Reversed-phase liquid chromatography (RP-HPLC) has become a powerful and widely employed technique in the separation and analysis of a great variety of compounds with different functionalities. The most common type of stationary phase for RP-HPLC consists of nonpolar, hydrophobic organic species (e.g., octyl, octadecyl) attached by siloxane bonds to the surface of a silica support. In the first part of this article, a description of the many beneficial properties that make porous silica the most employed support in RP-HPLC will be presented, starting from the synthesis of silica. It is noteworthy that the chromatographic properties of the final column are strictly correlated to the preparation type. A silica surface possesses a number of attractive properties, but also some drawbacks. Unreacted or residual silanols interact with basic compounds and can induced peak tailing, which means a loss in chromatographic performance. This problem has lead many manufactures to produce stationary phases with reduced silanol activity which improve dramatically the peak shape of basic compounds. In the second part of this review, different approaches are proposed to obtain less reactive stationary phases

    Silica and other materials as supports in liquid chromatography. Chromatographic tests and their importance for evaluating these supports. Part I

    Full text link
    corecore