870 research outputs found

    Non-interacting electrons and the metal-insulator transition in 2D with correlated impurities

    Full text link
    While standard scaling arguments show that a system of non-interacting electrons in two dimensions and in the presence of uncorrelated disorder is insulating, in this work we discuss the case where inter-impurity correlations are included. We find that for point-like impurities and an infinite inter-impurity correlation length a mobility edge exists in 2D even if the individual impurity potentials are random. In the uncorrelated system we recover the scaling results, while in the intermediate regime for length scales comparable to the correlation length, the system behaves like a metal but with increasing fluctuations, before strong localization eventually takes over for length scales much larger than the correlation length. In the intermediate regime, the relevant length scale is not given by the elastic scattering length but by the inter-impurity correlation length, with important consequences for high mobility systems.Comment: 4 page

    Superconductivity and short range order in metallic glasses Fex_{x}Ni1−x_{1-x}Zr2_{2}

    Full text link
    In amorphous superconductors, superconducting and vortex pinning properties are strongly linked to the absence of long range order. Consequently, superconductivity and vortex phases can be studied to probe the underlying microstructure and order of the material. This is done here from resistance and local magnetization measurements in the superconducting state of Fex_{x}Ni1−x_{1-x}Zr2_{2} metallic glasses with 0≤x≤0.60\leq x \leq 0.6. Firstly, we present typical superconducting properties such as the critical temperature and fields and their dependence on Fe content in these alloys. Then, the observations of peculiar clockwise hysteresis loops, wide double-step transitions and large magnetization fluctuations in glasses containing a large amount of Fe are analyzed to reveal a change in short range order with Fe content.Comment: 8 pages, 7 figure

    Experimental phase diagram of moving vortices

    Full text link
    In the mixed state of type II superconductors, vortices penetrate the sample and form a correlated system due to the screening of supercurrents around them. Interestingly, we can study this correlated system as a function of density and driving force. The density, for instance, is controlled by the magnetic field, B, whereas a current density j acts as a driving force F=jxB on all vortices. The free motion of vortices is inhibited by the presence of an underlying potential, which tends to pin the vortices. Hence, to minimize the pinning strength we studied a superconducting glass in which the depinning current is 10 to 1000 times smaller than in previous studies, which enables us to map out the complete phase diagram in this new regime. The diagram is obtained as a function of B, driving current and temperature and led a remarkable set of new results, which includes a huge peak effect, an additional reentrant depinning phase and a driving force induced pinning phase.Comment: 4 page

    The effect of Semi-Collisional Accretion on Planetary Spins

    Get PDF
    Planetesimal accretion during planet formation is usually treated as collisionless. Such accretion from a uniform and dynamically cold disk predicts protoplanets with slow retrograde rotation. However, if the building blocks of protoplanets, planetesimals, are small, of order of a meter in size, then they are likely to collide within the protoplanet's sphere of gravitational influence, creating a prograde accretion disk around the protoplanet. The accretion of such a disk results in the formation of protoplanets spinning in the prograde sense with the maximal spin rate allowed before centrifugal forces break them apart. As a result of semi-collisional accretion, the final spin of a planet after giant impacts is not completely random but is biased toward prograde rotation. The eventual accretion of the remaining planetesimals in the post giant-impact phase might again be in the semi-collisional regime and delivers a significant amount of additional prograde angular momentum to the terrestrial planets. We suggest that in our Solar System, semi-collisional accretion gave rise to the preference for prograde rotation observed in the terrestrial planets and perhaps the largest asteroids.Comment: 13 pages, 2 figure

    Localization Properties of the Periodic Random Anderson Model

    Full text link
    We consider diagonal disordered one-dimensional Anderson models with an underlying periodicity. We assume the simplest periodicity, i.e., we have essentially two lattices, one that is composed of the random potentials and the other of non-random potentials. Due to the periodicity special resonance energies appear, which are related to the lattice constant of the non-random lattice. Further on two different types of behaviors are observed at the resonance energies. When a random site is surrounded by non-random sites, this model exhibits extended states at the resonance energies, whereas otherwise all states are localized with, however, an increase of the localization length at these resonance energies. We study these resonance energies and evaluate the localization length and the density of states around these energies.Comment: 4 page

    Phase diagram of the integer quantum Hall effect in p-type Germanium

    Full text link
    We experimentally study the phase diagram of the integer quantized Hall effect, as a function of density and magnetic field. We used a two dimensional hole system confined in a Ge/SiGe quantum well, where all energy levels are resolved, because the Zeeman splitting is comparable to the cyclotron energy. At low fields and close to the quantum Hall liquid-to-insulator transition, we observe the floating up of the lowest energy level, but NO FLOATING of any higher levels, rather a merging of these levels into the insulating state. For a given filling factor, only direct transitions between the insulating phase and higher quantum Hall liquids are observed as a function of density. Finally, we observe a peak in the critical resistivity around filling factor one.Comment: 4 pages, 4 figures, some changes in the tex

    The quantized Hall effect in the presence of resistance fluctuations

    Full text link
    We present an experimental study of mesoscopic, two-dimensional electronic systems at high magnetic fields. Our samples, prepared from a low-mobility InGaAs/InAlAs wafer, exhibit reproducible, sample specific, resistance fluctuations. Focusing on the lowest Landau level we find that, while the diagonal resistivity displays strong fluctuations, the Hall resistivity is free of fluctuations and remains quantized at its ν=1\nu=1 value, h/e2h/e^{2}. This is true also in the insulating phase that terminates the quantum Hall series. These results extend the validity of the semicircle law of conductivity in the quantum Hall effect to the mesoscopic regime.Comment: Includes more data, changed discussio

    Photoconductivity in AC-driven modulated two dimensional electron gas in a perpendicular magnetic field

    Full text link
    In this work we study the microwave photoconductivity of a two-dimensional electron system (2DES) in the presence of a magnetic field and a two-dimensional modulation (2D). The model includes the microwave and Landau contributions in a non-perturbative exact way, the periodic potential is treated perturbatively. The Landau-Floquet states provide a convenient base with respect to which the lattice potential becomes time-dependent, inducing transitions between the Landau-Floquet levels. Based on this formalism, we provide a Kubo-like formula that takes into account the oscillatory Floquet structure of the problem. The total longitudinal conductivity and resistivity exhibit strong oscillations, determined by ϵ=ω/ωc\epsilon = \omega / \omega_c with ω\omega the radiation frequency and ωc\omega_c the cyclotron frequency. The oscillations follow a pattern with minima centered at ω/ωc=j+1/2(l−1)+δ\omega/\omega_c =j + {1/2} (l-1) + \delta , and maxima centered at ω/ωc=j+1/2(l−1)−δ\omega/\omega_c =j + {1/2} (l-1) - \delta , where j=1,2,3.......j=1,2,3......., δ∼1/5\delta \sim 1/5 is a constant shift and ll is the dominant multipole contribution. Negative resistance states (NRS) develop as the electron mobility and the intensity of the microwave power are increased. These NRS appear in a narrow window region of values of the lattice parameter (aa), around a∼lBa \sim l_B, where lBl_B is the magnetic length. It is proposed that these phenomena may be observed in artificially fabricated arrays of periodic scatterers at the interface of ultraclean GaAs/AlxGa1−xAsGaAs/Al_xGa_{1-x} As heterostructures.Comment: 20 pages, 8 figure

    Delocalization and conductance quantization in one-dimensional systems

    Full text link
    We investigate the delocalization and conductance quantization in finite one-dimensional chains with only off-diagonal disorder coupled to leads. It is shown that the appearence of delocalized states at the middle of the band under correlated disorder is strongly dependent upon the even-odd parity of the number of sites in the system. In samples with inversion symmetry the conductance equals 2e2/h2e^{2}/h for odd samples, and is smaller for even parity. This result suggests that this even-odd behaviour found previously in the presence of electron correlations may be unrelated to charging effects in the sample.Comment: submitted to PR
    • …
    corecore