10 research outputs found

    Stable Longitudinal Methylation Levels at the CpG Sites Flanking the CTG Repeat of DMPK in Patients with Myotonic Dystrophy Type 1

    No full text
    Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystem disorder mainly characterized by gradual muscle loss, weakness, and delayed relaxation after muscle contraction. It is caused by an expanded CTG repeat in the 3′ UTR of DMPK, which is transcribed into a toxic gain-of-function mRNA that affects the splicing of a range of other genes. The repeat is unstable, with a bias towards expansions both in somatic cells and in the germline, which results in a tendency for earlier onset with each generation, as longer repeat lengths generally correlate with earlier onset. Previous studies have found hypermethylation in the regions flanking the repeat in congenital onset DM1 and in some patients with non-congenital DM1. We used pyrosequencing to investigate blood methylation levels in 68 patients with non-congenital DM1, compare the methylation levels between the blood and muscle, and assess whether methylation levels change over time in the blood. We found higher methylation levels in the blood of DM1 patients than in healthy controls and especially in the patients who had inherited the disease allele maternally. The methylation levels remained relatively stable over time and are a strong biomarker of the disease, as well as of the maternal inheritance of the disease

    Elevated Expression of SLC6A4 Encoding the Serotonin Transporter (SERT) in Gilles de la Tourette Syndrome

    No full text
    Gilles de la Tourette syndrome (GTS) is a complex neurodevelopmental disorder characterized by motor and vocal tics. Most of the GTS individuals have comorbid diagnoses, of which obsessive-compulsive disorder (OCD) and attention deficit-hyperactivity disorder (ADHD) are the most common. Several neurotransmitter systems have been implicated in disease pathogenesis, and amongst these, the dopaminergic and the serotonergic pathways are the most widely studied. In this study, we aimed to investigate whether the serotonin transporter (SERT) gene (SLC6A4) was differentially expressed among GTS individuals compared to healthy controls, and whether DNA variants (the SERT-linked polymorphic region 5-HTTLPR, together with the associated rs25531 and rs25532 variants, and the rare Ile425Val variant) or promoter methylation of SLC6A4 were associated with gene expression levels or with the presence of OCD as comorbidity. We observed that SLC6A4 expression is upregulated in GTS individuals compared to controls. Although no specific genotype, allele or haplotype was overrepresented in GTS individuals compared to controls, we observed that the LAC/LAC genotype of the 5-HTTLPR/rs25531/rs25532 three-locus haplotype was associated with higher SLC6A4 mRNA expression levels in GTS individuals, but not in the control group

    High Resolution Analysis of DMPK Hypermethylation and Repeat Interruptions in Myotonic Dystrophy Type 1

    No full text
    Myotonic dystrophy type 1 (DM1) is a multisystemic neuromuscular disorder caused by the expansion of a CTG repeat in the 3′-UTR of DMPK, which is transcribed to a toxic gain-of-function RNA that affects splicing of a range of genes. The expanded repeat is unstable in both germline and somatic cells. The variable age at disease onset and severity of symptoms have been linked to the inherited CTG repeat length, non-CTG interruptions, and methylation levels flanking the repeat. In general, the genetic biomarkers are investigated separately with specific methods, making it tedious to obtain an overall characterisation of the repeat for a given individual. In the present study, we employed Oxford nanopore sequencing in a pilot study to simultaneously determine the repeat lengths, investigate the presence and nature of repeat interruptions, and quantify methylation levels in the regions flanking the CTG-repeats in four patients with DM1. We determined the repeat lengths, and in three patients, we observed interruptions which were not detected using repeat-primed PCR. Interruptions may thus be more common than previously anticipated and should be investigated in larger cohorts. Allele-specific analyses enabled characterisation of aberrant methylation levels specific to the expanded allele, which greatly increased the sensitivity and resolved cases where the methylation levels were ambiguous

    Ewas of monozygotic twins implicate a role of mtor pathway in pathogenesis of tic spectrum disorder

    No full text
    Tic spectrum disorder (TSD) is an umbrella term which includes Gilles de la Tourette syndrome (GTS) and chronic tic disorder (CTD). They are considered highly heritable, yet the genetic components remain largely unknown. In this study we aimed to investigate disease-associated DNA methylation differences to identify genes and pathways which may be implicated in TSD aetiology. For this purpose, we performed an exploratory analysis of the genome-wide DNA methylation patterns in whole blood samples of 16 monozygotic twin pairs, of which eight were discordant and six concordant for TSD, while two pairs were asymptomatic. Although no sites reached genome-wide significance, we identified several sites and regions with a suggestive significance, which were located within or in the vicinity of genes with biological functions associated with neuropsychiatric disorders. The two top genes identified (TSC1 and CRYZ/TYW3) and the enriched pathways and components (phosphoinosides and PTEN pathways, and insulin receptor substrate binding) are related to, or have been associated with, the PI3K/AKT/mTOR pathway. Genes in this pathway have previously been associated with GTS, and mTOR signalling has been implicated in a range of neuropsychiatric disorders. It is thus possible that altered mTOR signalling plays a role in the complex pathogenesis of TSD

    Involvement of Mitochondrial Dysfunction in <i>FOXG1</i> Syndrome

    No full text
    FOXG1 (Forkhead box g1) syndrome is a neurodevelopmental disorder caused by a defective transcription factor, FOXG1, important for normal brain development and function. As FOXG1 syndrome and mitochondrial disorders have shared symptoms and FOXG1 regulates mitochondrial function, we investigated whether defective FOXG1 leads to mitochondrial dysfunction in five individuals with FOXG1 variants compared to controls (n = 6). We observed a significant decrease in mitochondrial content and adenosine triphosphate (ATP) levels and morphological changes in mitochondrial network in the fibroblasts of affected individuals, indicating involvement of mitochondrial dysfunction in FOXG1 syndrome pathogenesis. Further investigations are warranted to elucidate how FOXG1 deficiency impairs mitochondrial homeostasis
    corecore