44 research outputs found

    Automating Verification of State Machines with Reactive Designs and Isabelle/UTP

    Full text link
    State-machine based notations are ubiquitous in the description of component systems, particularly in the robotic domain. To ensure these systems are safe and predictable, formal verification techniques are important, and can be cost-effective if they are both automated and scalable. In this paper, we present a verification approach for a diagrammatic state machine language that utilises theorem proving and a denotational semantics based on Unifying Theories of Programming (UTP). We provide the necessary theory to underpin state machines (including induction theorems for iterative processes), mechanise an action language for states and transitions, and use these to formalise the semantics. We then describe the verification approach, which supports infinite state systems, and exemplify it with a fully automated deadlock-freedom check. The work has been mechanised in our proof tool, Isabelle/UTP, and so also illustrates the use of UTP to build practical verification tools.Comment: 18 pages, 16th Intl. Conf. on Formal Aspects of Component Software (FACS 2018), October 2018, Pohang, South Kore

    Mild Electrical Stimulation with Heat Shock Ameliorates Insulin Resistance via Enhanced Insulin Signaling

    Get PDF
    Low-intensity electrical current (or mild electrical stimulation; MES) influences signal transduction and activates phosphatidylinositol-3 kinase (PI3K)/Akt pathway. Because insulin resistance is characterized by a marked reduction in insulin-stimulated PI3K-mediated activation of Akt, we asked whether MES could increase Akt phosphorylation and ameliorate insulin resistance. In addition, it was also previously reported that heat shock protein 72 (Hsp72) alleviates hyperglycemia. Thus, we applied MES in combination with heat shock (HS) to in vitro and in vivo models of insulin resistance. Here we show that 10-min treatment with MES at 5 V (0.1 ms pulse duration) together with HS at 42°C increased the phosphorylation of insulin signaling molecules such as insulin receptor substrate (IRS) and Akt in HepG2 cells maintained in high-glucose medium. MES (12 V)+mild HS treatment of high fat-fed mice also increased the phosphorylation of insulin receptor β subunit (IRβ) and Akt in mice liver. In high fat-fed mice and db/db mice, MES+HS treatment for 10 min applied twice a week for 12–15 weeks significantly decreased fasting blood glucose and insulin levels and improved insulin sensitivity. The treated mice showed significantly lower weight of visceral and subcutaneous fat, a markedly improved fatty liver and decreased size of adipocytes. Our findings indicated that the combination of MES and HS alleviated insulin resistance and improved fat metabolism in diabetes mouse models, in part, by enhancing the insulin signaling pathway
    corecore