49 research outputs found

    Breaking wave kinematics, local pressures, and forces on a tripod support structure

    Get PDF
    This paper presents breaking wave loads on a tripod structure from physical model tests and numerical simulations. The large scale model tests (1:12) are described as well as the validation of the three dimensional numerical model by comparison of CFD wave gauge data and pressures with measurements in the large wave flume inside and outside the impact area. Subsequently, the impact areas due to a broken wave, a curled wave front as well as for wave breaking directly at the structure with a partly vertical wave front are compared to each other. Line forces in terms of slamming coefficients with variation in time and space are derived from CFD results and the velocity distribution is presented at the onset of wave breaking. Finally, the results are briefly discussed in comparison to other slamming studies.German Federal Environment Ministry (BMU)/GIGAWIN

    Kollektive elektronische Anregungen strukturierter Silberschichten

    Get PDF
    [no abstract

    Evolving control rules for a dual-constrained job scheduling scenario

    Get PDF
    Dispatching rules are often used for scheduling in semiconductor manufacturing due to the complexity and stochasticity of the problem. In the past, simulation-based Genetic Programming has been shown to be a powerful tool to automate the time-consuming and expensive process of designing such rules. However, the scheduling problems considered were usually only constrained by the capacity of the machines. In this paper, we extend this idea to dual-constrained flow shop scheduling, with machines and operators for loading and unloading to be scheduled simultaneously. We show empirically on a small test problem with parallel workstations, re-entrant flows and dynamic stochastic job arrival that the approach is able to generate dispatching rules that perform significantly better than benchmark rules from the literature

    Dynamic adjustment of dispatching rule parameters in flow shops with sequence dependent setup times

    Get PDF
    Decentralized scheduling with dispatching rules is applied in many fields of production and logistics, especially in highly complex manufacturing systems. Since dispatching rules are restricted to their local information horizon, there is no rule that outperforms other rules across various objectives, scenarios and system conditions. In this paper, we present an approach to dynamically adjust the parameters of a dispatching rule depending on the current system conditions. The influence of different parameter settings of the chosen rule on system performance is estimated by a machine learning method, whose learning data is generated by preliminary simulation runs. Using a dynamic flow shop scenario with sequence dependent setup times, we demonstrate that our approach is capable of significantly reducing the mean tardiness of jobs

    Influence of Structural Elements on the Spatial Sediment Displacement around a Jacket-Type Offshore Foundation

    Get PDF
    This research advances the understanding of jacket-type platform induced local and global erosion and deposition processes for combined wave–current conditions. To this end, a laboratory study was carried out comparing the equilibrium scour depth for two structural designs that are differentiated in the geometrical distance of the structure’s lowest node to the seabed. Measurements of local scour depths over time have been conducted with echo sounding transducers. An empirical approach is proposed to predict the final scour depths as a function of the node distance to the seabed. Additionally, 3D laser scans have been performed to obtain the digital elevation model of the surrounding sediment bed. Novel methodologies were developed to describe and easily compare the relative volume change of the sediment bed per surface area due to structure–seabed interaction, enabling spatial analyses of highly complex erosion and deposition patterns. The seabed sediment mobility around the structure is found to be highly sensitive to a change in node distance. The decrease of the node distance results in a higher erosion depth of sediment underneath the structure of up to 26%, especially for current-dominated conditions, as well as an increased deposition of sediment downstream of the structure over a distance of up to 6.5 times the footprint length. The results of this study highlight the requirement to consider the interaction of the structure with the surrounding seabed within the design process of offshore structures, to mitigate potential impacts on the marine environment stemming from the extensive sediment displacement and increased sediment mobility

    Role and Impact of Hydrograph Shape on Tidal Current-Induced Scour in Physical-Modelling Environments

    Get PDF
    For physical model tests, the time-varying characteristics of tidal currents are often simplified by a hydrograph following a shape of a unidirectional current or by resolving the tidal velocity signal into discrete steps of constant flow velocity. The influence of this generalization of the hydrograph’s shape on the scouring process in tidal currents has not yet been investigated systematically, further increasing the uncertainty in the prediction of scour depth and rate. Therefore, hydraulic model tests were carried out to investigate and quantify the influence of the hydrograph shape on the scouring processes under tidal currents. Several different hydrographs including those with continuously changing velocities, constant unidirectional currents, square-tide velocities and stepped velocity time series were analyzed. Results show that the scouring process in tidal currents is characterized by concurrent sediment backfilling and displacement which can only be reproduced by hydrographs that incorporate a varying flow direction. However, if only a correct representation of final scour depths is of interest, similar scour depths as in tidal currents might be achieved by a constant, unidirectional current, provided that a suitable flow velocity is selected. The effective flow work approach was found capable to identify such suitable hydraulic loads with reasonable practical accuracy

    Volume-based assessment of erosion patterns around a hydrodynamic transparent offshore structure

    Get PDF
    The present article presents results of a laboratory study on the assessment of erosion patterns around a hydrodynamic transparent offshore foundation exposed to combined waves and currents. The model tests were conducted under irregular, long-crested waves in a scale of 1:30 in a wave-current basin. A terrestrial 3D laser scanner was used to acquire data of the sediment surface around the foundation structure. Tests have been conducted systematically varying from wave- to current-dominated conditions. Different volume analyzing methods are introduced, which can be related for any offshore or coastal structure to disclose physical processes in complex erosion patterns. Empirical formulations are proposed for the quantification of spatially eroded sediment volumes and scour depths in the near-field and vicinity of the structure. Findings from the present study agree well with in-situ data stemming from the field. Contrasting spatial erosion development between experimental and in-situ data determines a stable maximum of erosion intensity at a distance of 1.25 A, 1.25 times the structure’s footprint A, as well as a global scour extent of 2.1–2.7 A within the present study and about 2.7–2.8 A from the field. By this means, a structure-induced environmental footprint as a measure for erosion of sediment affecting marine habitat is quantified

    Use and subjective experience of the impact of motor-assisted movement exercisers in people with amyotrophic lateral sclerosis: a multicenter observational study

    Get PDF
    Motor-assisted movement exercisers (MME) are devices that assist with physical therapy in domestic settings for people living with ALS. This observational cross-sectional study assesses the subjective experience of the therapy and analyzes users' likelihood of recommending treatment with MME. The study was implemented in ten ALS centers between February 2019 and October 2020, and was coordinated by the research platform Ambulanzpartner. Participants assessed symptom severity, documented frequency of MME use and rated the subjective benefits of therapy on a numerical scale (NRS, 0 to 10 points, with 10 being the highest). The Net Promotor Score (NPS) determined the likelihood of a participant recommending MME. Data for 144 participants were analyzed. Weekly MME use ranged from 1 to 4 times for 41% of participants, 5 to 7 times for 42%, and over 7 times for 17%. Particularly positive results were recorded in the following domains: amplification of a sense of achievement (67%), diminution of the feeling of having rigid limbs (63%), diminution of the feeling of being immobile (61%), improvement of general wellbeing (55%) and reduction of muscle stiffness (52%). Participants with more pronounced self-reported muscle weakness were more likely to note a beneficial effect on the preservation and improvement of muscle strength during MME treatment (p < 0.05). Overall, the NPS for MME was high (+ 61). High-frequency MME-assisted treatment (defined as a minimum of five sessions a week) was administered in the majority of participants (59%) in addition to physical therapy. Most patients reported having achieved their individual therapeutic objectives, as evidenced by a high level of satisfaction with MME therapy. The results bolster the justification for extended MME treatment as part of a holistic approach to ALS care
    corecore