21 research outputs found

    Resonant cavity light emitting diodes : device characterisation and spectroscopy

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Impact of alloy disorder on the band structure of compressively strained GaBiAs

    Get PDF
    The incorporation of bismuth (Bi) in GaAs results in a large reduction of the band gap energy (Eg_g) accompanied with a large increase in the spin-orbit splitting energy (△SO\bigtriangleup_{SO}), leading to the condition that △SO>Eg\bigtriangleup_{SO} > E_g which is anticipated to reduce so-called CHSH Auger recombination losses whereby the energy and momentum of a recombining electron-hole pair is given to a second hole which is excited into the spin-orbit band. We theoretically investigate the electronic structure of experimentally grown GaBix_xAs1−x_{1-x} samples on (100) GaAs substrates by directly comparing our data with room temperature photo-modulated reflectance (PR) measurements. Our atomistic theoretical calculations, in agreement with the PR measurements, confirm that Eg_g is equal to △SO\bigtriangleup_{SO} for x≈\textit{x} \approx 9%. We then theoretically probe the inhomogeneous broadening of the interband transition energies as a function of the alloy disorder. The broadening associated with spin-split-off transitions arises from conventional alloy effects, while the behaviour of the heavy-hole transitions can be well described using a valence band-anticrossing model. We show that for the samples containing 8.5% and 10.4% Bi the difficulty in identifying a clear light-hole-related transition energy from the measured PR data is due to the significant broadening of the host matrix light-hole states as a result of the presence of a large number of Bi resonant states in the same energy range and disorder in the alloy. We further provide quantitative estimates of the impact of supercell size and the assumed random distribution of Bi atoms on the interband transition energies in GaBix_{x}As1−x_{1-x}. Our calculations support a type-I band alignment at the GaBix_xAs1−x_{1-x}/GaAs interface, consistent with recent experimental findings

    Effect of Single and Combined Monochromatic Light on the Human Pupillary Light Response

    Get PDF
    The pupillary light reflex (PLR) is a neurological reflex driven by rods, cones, and melanopsin-containing retinal ganglion cells. Our aim was to achieve a more precise picture of the effects of 5-min duration monochromatic light stimuli, alone or in combination, on the human PLR, to determine its spectral sensitivity and to assess the importance of photon flux. Using pupillometry, the PLR was assessed in 13 participants (6 women) aged 27.2 ± 5.41 years (mean ± SD) during 5-min light stimuli of purple (437 nm), blue (479 nm), red (627 nm), and combinations of red+purple or red+blue light. In addition, nine 5-min, photon-matched light stimuli, ranging in 10 nm increments peaking between 420 and 500 nm were tested in 15 participants (8 women) aged 25.7 ± 8.90 years. Maximum pupil constriction, time to achieve this, constriction velocity, area under the curve (AUC) at short (0–60 s), and longer duration (240–300 s) light exposures, and 6-s post-illumination pupillary response (6-s PIPR) were assessed. Photoreceptor activation was estimated by mathematical modeling. The velocity of constriction was significantly faster with blue monochromatic light than with red or purple light. Within the blue light spectrum (between 420 and 500 nm), the velocity of constriction was significantly faster with the 480 nm light stimulus, while the slowest pupil constriction was observed with 430 nm light. Maximum pupil constriction was achieved with 470 nm light, and the greatest AUC0−60 and AUC240−300 was observed with 490 and 460 nm light, respectively. The 6-s PIPR was maximum after 490 nm light stimulus. Both the transient (AUC0−60) and sustained (AUC240−300) response was significantly correlated with melanopic activation. Higher photon fluxes for both purple and blue light produced greater amplitude sustained pupillary constriction. The findings confirm human PLR dependence on wavelength, monochromatic or bichromatic light and photon flux under 5-min duration light stimuli. Since the most rapid and high amplitude PLR occurred within the 460–490 nm light range (alone or combined), our results suggest that color discrimination should be studied under total or partial substitution of this blue light range (460–490 nm) by shorter wavelengths (~440 nm). Thus for nocturnal lighting, replacement of blue light with purple light might be a plausible solution to preserve color discrimination while minimizing melanopic activation

    On the thermal stability of 1.3 mu m GaAsSb/GaAs-based lasers

    No full text
    In spite of the almost ideal variation of the radiative current of 1.3 mu m GaAsSb/GaAs-based lasers, the threshold current, J(th), is high due to non-radiative recombination accounting for 90% J(th) near room temperature. This also gives rise to low T-0 values similar to 60K close to room temperature, similar to that for InGaAsP/InP

    On the thermal stability of 1.3 mu m GaAsSb/GaAs-based lasers

    No full text
    In spite of the almost ideal variation of the radiative current of 1.3 mu m GaAsSb/GaAs-based lasers, the threshold current, J(th), is high due to non-radiative recombination accounting for 90% J(th) near room temperature. This also gives rise to low T-0 values similar to 60K close to room temperature, similar to that for InGaAsP/InP

    Influence of de-tuning and non-radiative recombination on the temperature dependence of 1.3 μ

    No full text
    In this letter, we measure the pure spontaneous emission and lasing emission from a working vertical cavity surface emitting laser (VCSEL) for a wide range of temperatures. From this spontaneous emission, we gain insight into the temperature dependence of the radiative component of the threshold current (and hence gain). Together with the temperature dependence of the threshold current, the cavity mode to gain peak alignment and the temperature dependence of an equivalent active region edge emitting laser, we show how non-radiative recombination coupled with gain-cavity de-tuning influences the thermal properties of these devices

    GaAs1−xBix/GaNyAs1−y type-II quantum wells: novel strain-balanced heterostructures for GaAs-based near- and mid-infrared photonics

    No full text
    The potential to extend the emission wavelength of photonic devices further into the near- and midinfrared via pseudomorphic growth on conventional GaAs substrates is appealing for a number of communications and sensing applications. We present a new class of GaAs-based quantum well (QW) heterostructure that exploits the unusual impact of Bi and N on the GaAs band structure to produce type-II QWs having long emission wavelengths with little or no net strain relative to GaAs, while also providing control over important laser loss processes. We theoretically and experimentally demonstrate the potential of GaAs1−xBix/GaNyAs1−y type-II QWs on GaAs and show that this approach offers optical emission and absorption at wavelengths up to ~3 μm utilising strain-balanced structures, a first for GaAs-based QWs. Experimental measurements on a prototype GaAs0.967Bi0.033/GaN0.062As0.938 structure, grown via metal-organic vapour phase epitaxy, indicate good structural quality and exhibit both photoluminescence and absorption at room temperature. The measured photoluminescence peak wavelength of 1.72 μm is in good agreement with theoretical calculations and is one of the longest emission wavelengths achieved on GaAs to date using a pseudomorphically grown heterostructure. These results demonstrate the significant potential of this new class of III-V heterostructure for longwavelength applications

    Relationship between Human Pupillary Light Reflex and Circadian System Status.

    Get PDF
    Intrinsically photosensitive retinal ganglion cells (ipRGCs), whose photopigment melanopsin has a peak of sensitivity in the short wavelength range of the spectrum, constitute a common light input pathway to the olivary pretectal nucleus (OPN), the pupillary light reflex (PLR) regulatory centre, and to the suprachiasmatic nuclei (SCN), the major pacemaker of the circadian system. Thus, evaluating PLR under short wavelength light (λmax ≤ 500 nm) and creating an integrated PLR parameter, as a possible tool to indirectly assess the status of the circadian system, becomes of interest. Nine monochromatic, photon-matched light stimuli (300 s), in 10 nm increments from λmax 420 to 500 nm were administered to 15 healthy young participants (8 females), analyzing: i) the PLR; ii) wrist temperature (WT) and motor activity rhythms (WA), iii) light exposure (L) pattern and iv) diurnal preference (Horne-Östberg), sleep quality (Pittsburgh) and daytime sleepiness (Epworth). Linear correlations between the different PLR parameters and circadian status index obtained from WT, WA and L recordings and scores from questionnaires were calculated. In summary, we found markers of robust circadian rhythms, namely high stability, reduced fragmentation, high amplitude, phase advance and low internal desynchronization, were correlated with a reduced PLR to 460-490 nm wavelengths. Integrated circadian (CSI) and PLR (cp-PLR) parameters are proposed, that also showed an inverse correlation. These results demonstrate, for the first time, the existence of a close relationship between the circadian system robustness and the pupillary reflex response, two non-visual functions primarily under melanopsin-ipRGC input
    corecore