6 research outputs found

    A Review of Prebiotics Against Salmonella in Poultry: Current and Future Potential for Microbiome Research Applications

    Get PDF
    Prebiotics are typically fermentable feed additives that can directly or indirectly support a healthy intestinal microbiota. Prebiotics have gained increasing attention in the poultry industry as wariness toward antibiotic use has grown in the face of foodborne pathogen drug resistance. Their potential as feed additives to improve growth, promote beneficial gastrointestinal microbiota, and reduce human-associated pathogens, has been well documented. However, their mechanisms remain relatively unknown. Prebiotics increasing short chain fatty acid (SCFA) production in the cecum have long since been considered a potential source for pathogen reduction. It has been previously concluded that prebiotics can improve the safety of poultry products by promoting the overall health and well-being of the bird as well as provide for an intestinal environment that is unfavorable for foodborne pathogens such as Salmonella. To better understand the precise benefit conferred by several prebiotics, ā€œomicā€ technologies have been suggested and utilized. The data acquired from emerging technologies of microbiomics and metabolomics may be able to generate a more comprehensive detailed understanding of the microbiota and metabolome in the poultry gastrointestinal tract. This understanding, in turn, may allow for improved administration and optimization of prebiotics to prevent foodborne illness as well as elucidate unknown mechanisms of prebiotic actions. This review explores the use of prebiotics in poultry, their impact on gut Salmonella populations, and how utilization of next-generation technologies can elucidate the underlying mechanisms of prebiotics as feed additives

    Potential for Prebiotics as Feed Additives to Limit Foodborne Campylobacter Establishment in the Poultry Gastrointestinal Tract

    Get PDF
    Campylobacter as an inhabitant of the poultry gastrointestinal tract has proven to be difficult to reduce with most feed additives. In-feed antibiotics have been taken out of poultry diets due to the negative reactions of consumers along with concerns regarding the generation of antibiotic resistant bacteria. Consequently, interest in alternative feed supplements to antibiotics has grown. One of these alternatives, prebiotics, has been examined as a potential animal and poultry feed additive. Prebiotics are non-digestible ingredients by host enzymes that enhance growth of indigenous gastrointestinal bacteria that elicit metabolic characteristics considered beneficial to the host and depending on the type of metabolite, antagonistic to establishment of pathogens. There are several carbohydrate polymers that qualify as prebiotics and have been fed to poultry. These include mannan-oligosaccharides and fructooligosaccharides as the most common ones marketed commercially that have been used as feed supplements in poultry. More recently, several other non-digestible oligosaccharides have also been identified as possessing prebiotic properties when implemented as feed supplements. While there is evidence that prebiotics may be effective in poultry and limit establishment of foodborne pathogens such as Salmonella in the gastrointestinal tract, less is known about their impact on Campylobacter. This review will focus on the potential of prebiotics to limit establishment of Campylobacter in the poultry gastrointestinal tract and future research directions

    Original XPCTM Effect on Salmonella Typhimurium and Cecal Microbiota from Three Different Ages of Broiler Chickens When Incubated in an Anaerobic In Vitro Culture System

    Get PDF
    Feed supplements are utilized in the poultry industry as a means for improving growth performance and reducing pathogens. The aim of the present study was to evaluate the effects of Diamond V Original XPCTM (XPC, a fermented product generated from yeast cultures) on Salmonella Typhimurium ST 97 along with its potential for modulation of the cecal microbiota by using an anaerobic in vitro mixed culture assay. Cecal slurries obtained from three broiler chickens at each of three sampling ages (14, 28, and 42 days) were generated and exposed to a 24 h pre-incubation period with the various treatments: XPC (1% XPC, ceca, and feeds), CO (ceca only), and NC (negative control) group consisting of ceca and feeds. The XPC, CO, and NC were each challenged with S. Typhimurium and subsequently plated on selective media at 0, 24, and 48 h. Plating results indicated that the XPC treatment significantly reduced the survival of S. Typhimurium at the 24 h plating time point for both the 28 and 42 days bird sampling ages, while S. Typhimurium reduction in the NC appeared to eventually reach the same population survival level at the 48 h plating time point. For microbiome analysis, Trial 1 revealed that XPC, CO, and NC groups exhibited a similar pattern of taxa summary. However, more Bacteroidetes were observed in the CO group at 24 and 48 h. There were no significant differences (P > 0.05) in alpha diversity among samples based on day, hour and treatment. For beta diversity analysis, a pattern shift was observed when samples clustered according to sampling hour. In Trial 2, both XPC and NC groups exhibited the highest Firmicutes level at 0 h but the Bacteroidetes group became dominant at 6 h. Complexity of alpha diversity was increased in the initial contents from older birds and became less complex after 6 h of incubation. Beta diversity analysis was clustered as a function of treatment NC and XPC groups and by individual hours including 6, 12, 24, and 48 h. Overall, addition of XPC influenced microbiome diversity in a similar fashion to the profile of the NC group

    Saccharomyces cerevisiae Fermentation Products That Mitigate Foodborne Salmonella in Cattle and Poultry

    Get PDF
    Prior studies revealed that yeast fermentation products, specifically XPCā„¢ and related products (Diamond V, Cedar Rapids, IA), serve as viable food safety tools across multiple food animal species including cattle and poultry. Providing this supplement in feed leads to reduced prevalence, load, virulence, and antibiotic resistance of foodborne pathogens such as Salmonella and Escherichia coli O157:H7. These findings are worthy of further study, especially when coupled with the enhanced growth and performance observed with these products. Mechanistically, XPC appears to modulate these effects through the immune system and gut microbiome. Herein we further investigated this product and demonstrate that XPC mediates an enhancement of immunocyte killing of Salmonella in calves fed the product. Additionally, these studies reveal that XPC reduces the lymph node infiltration, invasiveness, and antibiotic resistance of Salmonella in dairy calves fed the product-consistent with findings observed in poultry and adult beef cattle. Furthermore, the reduction in invasiveness does not lead to a rebound hyperinvasive phenotype in Salmonella obtained from XPC-fed animals. In summary, these studies suggest that XPC reduces the invasion of Salmonella and may alter various phenotypic characteristics of the pathogen

    Reducing Stress Susceptibility of Broiler Chickens by Supplementing a Yeast Fermentation Product in the Feed or Drinking Water

    No full text
    Reducing stress is an important goal in animal production. Previous research has demonstrated the ability of Original XPCTM to reduce the stress response of broilers during heat stress. Three trials were conducted to evaluate the effects of adding Original XPCTM to the feed or AviCareTM to the water on stress susceptibility of broiler chickens. Treatments included: control nonstressed (CNS), control stressed (CS), stressed with Original XPCTM (1.25 kg/metric ton feed, 0–42 days; XPC), and stressed with AviCareTM (160 mL/100 L drinking water, 0–42 days; AVI). All stressed treatments received the following stressors: live coccidiosis vaccination (day 1), reared on reused litter (days 0–42), and heat stress with feed/water withdrawal (12 h on day 18). Plasma corticosterone and heterophil/lymphocyte (H/L) ratio were determined from 60 birds/T on day 19, and 24 birds/T on day 41. Physical asymmetry was determined using bilateral bone measurements from 60 birds/T on day 41. Birds provided XPC or AVI had lower corticosterone and H/L ratios than CS (p < 0.05) on day 19 and lower corticosterone, H/L ratios, and asymmetry scores than both CNS and CS on day 41 (p < 0.05) in all three trials. Supplementing XPC or AVI improved broiler welfare measured by reduced stress indicators after acute heat stress or normal rearing stress in all trials

    Determination of Antimicrobial Resistance Patterns in Salmonella from Commercial Poultry as Influenced by Microbiological Culture and Antimicrobial Susceptibility Testing Methods

    No full text
    Monitoring antimicrobial resistance of foodborne pathogens in poultry is critical for food safety. We aimed to compare antimicrobial resistance phenotypes in Salmonella isolated from poultry samples as influenced by isolation and antimicrobial susceptibility testing methods. Salmonella isolates were cultured from a convenience sample of commercial broiler ceca with and without selective broth enrichment, and resistance phenotypes were determined for 14 antimicrobials using the SensititreĀ® platform and a qualitative broth breakpoint assay. The broth breakpoint method reported higher resistance to chloramphenicol, sulfisoxazole, and the combination of trimethoprim and sulfamethoxazole, and lower resistance to streptomycin as compared to the SensititreĀ® assay in trial one. Selective enrichment of samples containing Salmonella in Rappaport-Vassiliadis broth reported lowered detectable resistance to amoxicillin/clavulanic acid, ampicillin, azithromycin, cefoxitin, ceftriaxone, nalidixic acid, and meropenem, and increased resistance to streptomycin and tetracycline than direct-plating samples in trial one. Using matched isolates in trial two, the SensititreĀ® assay reported higher resistance to chloramphenicol and gentamicin, and lower resistance to nalidixic acid as compared to the broth breakpoint method. These results suggest methodology is a critical consideration in the detection and surveillance of antimicrobial resistance phenotypes in Salmonella isolates from poultry samples and could affect the accuracy of population or industry surveillance insights and intervention strategies
    corecore