13 research outputs found
Measurements of Beam Backgrounds in SuperKEKB Phase 2
The high design luminosity of the SuperKEKB electron-positron collider will result in challenging levels of beam-induced backgro unds in the interaction region. Understanding and mitigating these backgrounds is critical to the success of the Belle~II experi ment. We report on the first background measurements performed after roll-in of the Belle II detector, a period known as SuperKE KB Phase 2, utilizing both the BEAST II system of dedicated background detectors and the Belle II detector itself. We also repor t on first revisions to the background simulation made in response to our findings. Backgrounds measured include contributions f rom synchrotron radiation, beam-gas, Touschek, and injection backgrounds. At the end of Phase 2, single-beam backgrounds origina ting from the 4 GeV positron Low Energy Ring (LER) agree reasonably well with simulation, while backgrounds from the 7 GeV elect ron High Energy Ring (HER) are approximately one order of magnitude higher than simulation. We extrapolate these backgrounds for ward and conclude it is safe to install the Belle II vertex detector
Performance of the Belle II Silicon Vertex Detector
The Belle II experiment at the SuperKEKB collider of KEK (Japan) will accumulate 50 ab−1 of e+e− collision data at an unprecedented instantaneous luminosity of 8 ×1035 cm−2s−1, about 40 times larger than its predecessor. The Belle II vertex detector plays a crucial role in the rich Belle II physics program, especially for time-dependent measurements. It consists of two layers of DEPFET-based pixels and four layers of double sided silicon strips detectors(SVD). The vertex detector has been recently completed and installed in Belle II for the physics run started in spring 2019. We report here results on the commissioning of the SVD and its performance measured with the first collision data set
Data quality monitors of vertex detectors at the start of the Belle II experiment
The Belle II experiment features a substantial upgrade of the Belle detector and will operate at the SuperKEKB energy-asymmetric e+e− collider at KEK in Tsukuba, Japan. The accelerator completed its first phase of commissioning in 2016, and the Belle II detector saw its first electron-positron collisions in April 2018. Belle II features a newly designed silicon vertex detector based on double-sided strip layers and DEPFET pixel layers. A subset of the vertex detector was operated in 2018 to determine background conditions (Phase 2 operation). The collaboration completed full detector installation in January 2019, and the experiment started full data taking.
This paper will report on the final arrangement of the silicon vertex detector part of Belle II with a focus on online monitoring of detector conditions and data quality, on the design and use of diagnostic and reference plots, and on integration with the software framework of Belle II. Data quality monitoring plots will be discussed with a focus on simulation and acquired cosmic and collision data
Alignment for the first precision measurements at Belle II
International audienceOn March 25th 2019, the Belle II detector recorded the first collisions delivered by the SuperKEKB accelerator. This marked the beginning of the physics run with vertex detector.The vertex detector was aligned initially with cosmic ray tracks without magnetic field simultaneously with the drift chamber. The alignment method is based on Millepede II and the General Broken Lines track model and includes also the muon system or primary vertex position alignment. To control weak modes, we employ sensitive validation tools and various track samples can be used as alignment input, from straight cosmic tracks to mass-constrained decays.With increasing luminosity and experience, the alignment is approaching the target performance, crucial for the first physics analyses in the era of Super-BFactories. We will present the software framework for the detector calibration and alignment, the results from the first physics run and the prospects in view of the experience with the first data
Alignment for the first precision measurements at Belle II
On March 25th 2019, the Belle II detector recorded the first collisions delivered by the SuperKEKB accelerator. This marked the beginning of the physics run with vertex detector.
The vertex detector was aligned initially with cosmic ray tracks without magnetic field simultaneously with the drift chamber. The alignment method is based on Millepede II and the General Broken Lines track model and includes also the muon system or primary vertex position alignment. To control weak modes, we employ sensitive validation tools and various track samples can be used as alignment input, from straight cosmic tracks to mass-constrained decays.
With increasing luminosity and experience, the alignment is approaching the target performance, crucial for the first physics analyses in the era of Super-BFactories. We will present the software framework for the detector calibration and alignment, the results from the first physics run and the prospects in view of the experience with the first data
Data quality monitors of vertex detectors at the start of the Belle II experiment
The Belle II experiment features a substantial upgrade of the Belle detector and will operate at the SuperKEKB energy-asymmetric e+e− collider at KEK in Tsukuba, Japan. The accelerator completed its first phase of commissioning in 2016, and the Belle II detector saw its first electron-positron collisions in April 2018. Belle II features a newly designed silicon vertex detector based on double-sided strip layers and DEPFET pixel layers. A subset of the vertex detector was operated in 2018 to determine background conditions (Phase 2 operation). The collaboration completed full detector installation in January 2019, and the experiment started full data taking.
This paper will report on the final arrangement of the silicon vertex detector part of Belle II with a focus on online monitoring of detector conditions and data quality, on the design and use of diagnostic and reference plots, and on integration with the software framework of Belle II. Data quality monitoring plots will be discussed with a focus on simulation and acquired cosmic and collision data