38 research outputs found

    Quantum Gravitational Corrections to the Nonrelativistic Scattering Potential of Two Masses

    Get PDF
    We treat general relativity as an effective field theory, obtaining the full nonanalytic component of the scattering matrix potential to one-loop order. The lowest order vertex rules for the resulting effective field theory are presented and the one-loop diagrams which yield the leading nonrelativistic post-Newtonian and quantum corrections to the gravitational scattering amplitude to second order in G are calculated in detail. The Fourier transformed amplitudes yield a nonrelativistic potential and our result is discussed in relation to previous calculations. The definition of a potential is discussed as well and we show how the ambiguity of the potential under coordinate changes is resolved.Comment: 27 pages, 17 figure

    CPT Violation and the Standard Model

    Full text link
    Spontaneous CPT breaking arising in string theory has been suggested as a possible observable experimental signature in neutral-meson systems. We provide a theoretical framework for the treatment of low-energy effects of spontaneous CPT violation and the attendant partial Lorentz breaking. The analysis is within the context of conventional relativistic quantum mechanics and quantum field theory in four dimensions. We use the framework to develop a CPT-violating extension to the minimal standard model that could serve as a basis for establishing quantitative CPT bounds.Comment: accepted in Phys. Rev. D; scheduled for June 199

    Note on anomalous K+-decay events

    No full text

    Some relations among Green’s functions

    No full text

    Different Ways to Estimate Graviton Mass

    No full text

    The polarization of the λp0 in the decay σp0→λp0+ep-+ep+

    No full text
    corecore