18 research outputs found
Establishment of an In Vivo Xenograft Mouse Model of a Subcutaneous Submillimeter HT-29 Tumor Formed from a Single Spheroid Transplanted Using Radiation-Crosslinked Gelatin Hydrogel Microwell
Colorectal cancer is a frequent cause of death worldwide. The detection and treatment of small nodules are crucial for improving survival of colorectal cancer patients. Submillimeter tumors are useful tools for developing novel methods to approach this issue. However, there are no suitable in vivo models that allow easy monitoring of the growth of these tumors. This study established a xenograft mouse model of subcutaneous submillimeter tumors with human colorectal cancer HT-29 cells. We transplanted a single spheroid formed by HT-29 cells expressing red fluorescent protein (RFP) (HT-29-RFP). Additionally, we adopted our newly developed radiation-crosslinked gelatin hydrogel microwells (rGHMs), which can be used as a culture base to form spheroids and as a transplantation scaffold with biocompatibility and biodegradability. Spheroids approximately 700 μm in size were uniformly created in seven days in the respective rGHMs. Every single spheroid was extracted either with or without rGHM and transplanted into the subcutis of severe combined immunodeficiency (SCID) mice (n = 4). After 21 days, the spheroids inoculated together with rGHM successfully formed uniform subcutaneous submillimeter tumor xenografts that were observable in vivo in a stereoscopic fluorescence microscope in all transplanted mice. In contrast, spheroids transplanted without rGHM also developed small tumors in all mice but showed higher variability in size than those transplanted with rGHM. During transplantation, the rGHM ensured easy handling and stabilization of the position of a single spheroid. Inoculation of spheroids with rGHM in the nude mice was similarly examined (n = 4), showing that only one out of four mice formed tumors. In conclusion, rGHM effectively formed spheroids and created uniformed xenografted submillimeter tumors of HT-29-RFP in SCID mice. Our model could provide a useful platform to develop medicines and methods for detection and treatment of small nodules of colorectal cancer. View Full-TextKeywords: in vivo; radiation-crosslinked gelatin hydrogel; microwell array; spheroid; subcutaneous submillimeter tumor xenograf
Establishment of an In Vivo Xenograft Mouse Model of a Subcutaneous Submillimeter HT-29 Tumor Formed from a Single Spheroid Transplanted Using Radiation-Crosslinked Gelatin Hydrogel Microwell
Colorectal cancer is a frequent cause of death worldwide. The detection and treatment of small nodules are crucial for improving survival of colorectal cancer patients. Submillimeter tumors are useful tools for developing novel methods to approach this issue. However, there are no suitable in vivo models that allow easy monitoring of the growth of these tumors. This study established a xenograft mouse model of subcutaneous submillimeter tumors with human colorectal cancer HT-29 cells. We transplanted a single spheroid formed by HT-29 cells expressing red fluorescent protein (RFP) (HT-29-RFP). Additionally, we adopted our newly developed radiation-crosslinked gelatin hydrogel microwells (rGHMs), which can be used as a culture base to form spheroids and as a transplantation scaffold with biocompatibility and biodegradability. Spheroids approximately 700 μm in size were uniformly created in seven days in the respective rGHMs. Every single spheroid was extracted either with or without rGHM and transplanted into the subcutis of severe combined immunodeficiency (SCID) mice (n = 4). After 21 days, the spheroids inoculated together with rGHM successfully formed uniform subcutaneous submillimeter tumor xenografts that were observable in vivo in a stereoscopic fluorescence microscope in all transplanted mice. In contrast, spheroids transplanted without rGHM also developed small tumors in all mice but showed higher variability in size than those transplanted with rGHM. During transplantation, the rGHM ensured easy handling and stabilization of the position of a single spheroid. Inoculation of spheroids with rGHM in the nude mice was similarly examined (n = 4), showing that only one out of four mice formed tumors. In conclusion, rGHM effectively formed spheroids and created uniformed xenografted submillimeter tumors of HT-29-RFP in SCID mice. Our model could provide a useful platform to develop medicines and methods for detection and treatment of small nodules of colorectal cancer
Identification and quantitative structure–activity relationship assessment of trace chemical impurities contained in the therapeutic formulation of [64Cu]Cu-ATSM
Background: [64Cu]Cu-diacethyl-bis(N4-methylthiosemicarbazone) ([64Cu]Cu-ATSM) is a radioactive hypoxia-targeting therapeutic agent, and the efficacy and safety of [64Cu]Cu-ATSM in the treatment of malignant brain tumors are evaluated in clinical trials. For the clinical application of [64Cu]Cu-ATSM, we determined a drug formulation incorporating a stabilizer against radiolysis and confirmed its radiochemical stability. This study aimed to identify trace chemical impurities derived from the degradation of ATSM contained in the [64Cu]Cu-ATSM investigational drug formulation and assess their potential hazards by quantitative structure–activity relationship (QSAR) assessment.Methods: We hypothesized that the chemical impurities contained in the [64Cu]Cu-ATSM formulation were derived from the degradation of ATSM. Therefore, we first identified the degradants of ATSM using LC-MS/MS. ATSM was dissolved with the drug formulation of [64Cu]Cu-ATSM, except for 64Cu, and analyzed by LC-MS/MS at 0 and 48 h after sample preparation. Subsequently, the chemical impurities contained in the [64Cu]Cu-ATSM formulation were measured at 0, 5, and 24 h after preparation by HPLC, and the results were compared to the degradants of ATSM. The potential hazards of the chemical impurities contained in the [64Cu]Cu-ATSM formulation were assessed using the QSAR Toolbox (ver. 4.3). Results: Six ATSM degradants were detected and identified by LC-MS/MS analysis, indicating that the functional groups around the nitrogen and sulfur atoms of ATSM were affected. The same peaks were detected as trace chemical impurities in the [64Cu]Cu-ATSM formulation at 24 h, while no apparent peaks were detected at 0 and 5 h. The estimated LD50 values of these chemical impurities showed 4.31 mg/kg or more by QSAR assessment. In contrast, the estimated amount of each chemical impurity exposed to patients was 31.8 ng/kg or less per dose. The smallest margin between the amount of chemical impurities and smallest estimated LD50 value of the corresponding impurity was a ratio of approximately 1:700,000.Conclusions: We identified trace chemical impurities derived from ATSM in the [64Cu]Cu-ATSM formulation. This suggests that the potential risk of the systemic exposure of patients to these chemical impurities is substantially low
Efficacy of vorinostat-sensitized intraperitoneal radioimmunotherapy with 64Cu-labeled cetuximab against peritoneal dissemination of gastric cancer in a mouse model
Gastric cancer is a common cause of cancer-related death worldwide and peritoneal dissemination is the most frequent metastatic pattern of gastric cancer. However, treatment of this disease condition remains difficult. It has been demonstrated that intraperitoneal radioimmunotherapy (ipRIT) with 64Cu-labeled cetuximab (anti-epidermal growth factor receptor antibody; 64Cu-cetuximab) is a potential treatment for peritoneal dissemination of gastrointestinal cancer in vivo. Recent preclinical and clinical studies have also shown that a histone deacetylase inhibitor, vorinostat, effectively sensitized gastrointestinal cancer to external radiation. In the present study, we examined the efficacy of the combined use of vorinostat, as a radiosensitizer during ipRIT with 64Cu-cetuximab in a peritoneal dissemination mouse model with human gastric cancer NUGC4 cells stably expressing red fluorescent protein (NUGC4-RFP cells). The mouse model was treated by ipRIT with 64Cu-cetuximab plus vorinostat, each single treatment, or saline (control). Side effects, including hematological and biochemical parameters, were evaluated in similarly treated, tumor-free mice. Coadministration of ipRIT with 64Cu-cetuximab + vorinostat significantly prolonged survival compared to control and each single treatment. No significant toxicity signals were observed in all treatment groups. Our data suggest that vorinostat is a potentially effective radiosensitizer for use during treatment of peritoneal dissemination of gastric cancer by ipRIT with 64Cu-cetuximab
Evaluation of Aminopolycarboxylate Chelators for Whole-Body Clearance of Free Ac: A Feasibility Study to Reduce Unexpected Radiation Exposure during Targeted Alpha Therapy.
Actinium-225 (Ac) is a promising radionuclide used in targeted alpha therapy (TAT). Although Ac labeling of bifunctional chelating ligands is effective, previous in vivo studies reported that free Ac can be released from the drugs and that such free Ac is predominantly accumulated in the liver and could cause unexpected toxicity. To accelerate the clinical development of Ac TAT with a variety of drugs, preparing methods to deal with any unexpected toxicity would be valuable. The aim of this study was to evaluate the feasibility of various chelators for reducing and excreting free Ac and compare their chemical structures. Nine candidate chelators (D-penicillamine, dimercaprol, Ca-DTPA, Ca-EDTA, CyDTA, GEDTA TTHA, Ca-TTHA, and DO3A) were evaluated in vitro and in vivo. The biodistribution and dosimetry of free Ac were examined in mice before an in vivo chelating study. The liver exhibited pronounced Ac uptake, with an estimated human absorbed dose of 4.76 Sv/MBq. Aminopolycarboxylate chelators with five and six carboxylic groups, Ca-DTPA and Ca-TTHA, significantly reduced Ac retention in the liver (22% and 30%, respectively). Significant Ac reductions were observed in the heart and remainder of the body with both Ca-DTPA and Ca-TTHA, and in the lung, kidney, and spleen with Ca-TTHA. In vitro interaction analysis supported the in vivo reduction ability of Ca-DTPA and Ca-TTHA. In conclusion, aminopolycarboxylate chelators with five and six carboxylic groups, Ca-DTPA and Ca-TTHA, were effective for whole-body clearance of free Ac. This feasibility study provides useful information for reducing undesirable radiation exposure from free Ac
Preclinical Safety Evaluation of Intraperitoneally Administered Cu-Conjugated Anti-EGFR Antibody NCAB001 for the Early Diagnosis of Pancreatic Cancer Using PET
Detecting tumor lesions <1 cm in size using current imaging methods remains a clinical challenge, especially in pancreatic cancer. Previously, we developed a method to identify pancreatic tumor lesions ≥3 mm using positron emission tomography (PET) with an intraperitoneally administered 64Cu-labeled anti-epidermal growth factor receptor (EGFR) antibody (64Cu-NCAB001 ipPET). Here, we conducted an extended single-dose toxicity study of 64Cu-NCAB001 ipPET in mice based on approach 1 of the current ICH M3 [R2] guideline, as our new drug formulation contains 45 μg of the antibody. We used NCAB001 labeled with stable copper isotope instead of 64Cu. The total content of size variants was approximately 6.0% throughout the study. The relative binding potency of Cu-NCAB001 to recombinant human EGFR was comparable to that of cetuximab. The general and neurological toxicities of Cu-NCAB001 ipPET at 62.5 or 625 μg/kg were assessed in mice. The no-observed-adverse-effect level of Cu-NCAB001 was 625 μg/kg, a dose approximately 1000-fold higher at the μg/kg level than the dose of 64Cu-NCAB001 in our formulation (45 µg). The size variants did not affect the safety of the formulation. Therefore, clinical studies on the efficacy of 64Cu-NCAB001 ipPET for early detection of pancreatic cancer using PET imaging can be safely conducted
Characterization and Stabilization of a New 64Cu-Labeled Anti-EGFR Antibody NCAB001 for the Early Detection of Pancreatic Cancer with Positron Emission Tomography
Early diagnosis of pancreatic cancer using current imaging modalities remains challenging. We have developed a new approach to identify tumor lesions ≥ 3 mm in the pancreas by positron emission tomography (PET) with a new intraperitoneally administered 64Cu-labeled anti-epidermal growth factor receptor (EGFR) antibody (encoded as NCAB001), called 64Cu-NCAB001 ipPET. Generally, in clinical research, a radiometal-antibody complex must be prepared immediately before use at the imaging site. To make 64Cu-NCAB001 ipPET available to daily clinical practices in a sustainable way, the NCAB001-chelator conjugate and 64Cu-NCAB001 must be characterized and stabilized. NCAB001 was manufactured under cGMP conditions. NCAB001 was conjugated with a bifunctional chelator (p-SCN-Bn-PCTA), and the antibody-chelator conjugate (PCTA-NCAB001) was characterized by LC/MS and ELISA. Thereafter, to effectively manufacture 64Cu-NCAB001, we developed a new formulation to stabilize PCTA-NCAB001 and 64Cu-NCAB001. An average of three PCTA chelators were conjugated per molecule of NCAB001. The relative binding potency of PCTA-NCAB001 was comparable to cetuximab. The formulation consisting of acetate buffer, glycine, and polysorbate-80 stabilized PCTA-NCAB001 for a year-long storage. Additionally, this formulation enabled the stabilization of 64Cu-NCAB001 for up to 24 h after radiolabeling with a sufficient radioactivity concentration for clinical use. These results may accelerate the future use of 64Cu-NCAB001 ipPET in clinical settings for the early diagnosis and treatment of pancreatic cancer