4 research outputs found

    Analysis and simulation of the adhesion forces between clot and the artery wall for a novel thrombectomy device applied to the Middle Cerebral Artery

    Get PDF
    A number of Thrombectomy devices using a variety of methods have now been developed to facilitate clot removal. We present research involving one such experimental device recently developed in the UK, called a 'GP' Thrombus Aspiration Device (TAD). This device has the potential to improve the process of extracting thrombosis clots in the cerebral arteries. The development of a simulation model for this device is shown using Bond-Graph formalism applied to modeling and simulating the adhesion forces between the clot and the artery wall. Bond-Graph technique is a visual methodology that adds more transparency to the processes and it has turned out to be remarkably useful as it is a simple, effective method that can be applied to any physical system where there is a power exchange. Such modelling appears to be able to simulate the device under a variety of conditions which may assist in the optimisation of the `GP' TAD device if the novel design features of the device can be effectively incorporated into the model

    Simulation of the GPTAD applied to the removal of blood clots that arise during Peripheral Vascular Disease

    Get PDF
    A number of thrombectomy devices using a variety of methods have now been developed to facilitate clot removal. We present research involving one such experimental device recently developed in the UK, called a 'GP' thrombus-aspiration-device (GPTAD). This device has the potential to bring about the extraction of a thrombus. Although the device is at a relatively early stage of development, the results look encouraging. We present an analysis of modelling this device using modelling techniques. Such modelling appears to be highly effective in simulating the device under a variety of conditions with a view to assisting in the optimisation of the GPTAD. The aim of this simulation model is to obtain the minimum pressure necessary to extract the clot and to verify that, both the pressure and the time required to complete the clot extraction are reasonable for use in clinical situations, and are consistent with any experimentally obtained data

    Comportamiento mecánico de mezclas de escoria vítrea de horno alto y metacaolín activadas alcalinamente. Estudio estadístico.

    Full text link
    El proceso de fabricación de cemento Pórtland está asociado a un elevado consumo energético (térmico y eléctrico) y a aspectos medioambientales negativos. La industria cementera es una industria altamente contaminante, debido, en gran medida, a las elevadas cantidades de materias primas necesarias para la fabricación del crudo de cemento (explotación de canteras) y a la emisión a la atmósfera de gases (N2, CO2, O2, H2O, NOx y SO2) y partículas. Algunos de estos gases son causantes del efecto invernadero. El CO2 es el gas con mayor impacto medioambiental; siendo la industria cementera la responsable del 7% de las emisiones antropogénicas globales de CO2 a nivel mundial. Es por ello, que el estudio y desarrollo de cementos alternativos y más eco-eficientes que el cemento Portland, es un tema de gran impacto a nivel científico y tecnológico. Entre esos posibles cementos se encuentran los cementos alcalinos que son materiales conglomerantes obtenidos por la interacción química de materiales silicoaluminosos cálcicos y disoluciones fuertemente alcalinas. Diferentes materiales pueden ser susceptibles de activarse alcalinamente, entre ellos se encuentran las escorias vítreas de horno alto, las cenizas volantes y arcillas térmicamente activadas (Ej. metacaolín). En el presente trabajo de investigación se estudia el comportamiento mecánico de mezclas de escoria vítrea de horno alto y metacaolín activadas alcalinamente con disoluciones de NaOH. El objetivo de este estudio es conocer como afectan parámetros tales como la relación escoria/metacaolín, concentración de la disolución activadora, temperatura y tiempo de curado sobre el desarrollo resistente de las mezclas. A través del estudio estadístico realizado se ha podido establecer la influencia de cada variable y modelizar el comportamiento resistente de estos cementos alcalino

    Modelling and simulation of a thrombectomy probe applied to the middle cerebral artery by using the bond graph technique

    No full text
    Thrombosis is produced by the formation of a clot inside blood vessels causing an abrupt interruption of the blood flow. In the cerebral arteries, this occlusion can take place due to the presence of a clot that has formed at another location of greater diameter. It then obstructs the cerebral artery due to its smaller cross section. The process concerning the removal of this obstruction involves catheterisation. The experimental probe under study in this paper was developed by Dr G. Pearce and Reverend Neil Perkinson [1]. The probe, which when developed further may form the basis of a new Thrombectomy Aspiration Device (TAD) is called the GPTAD. Once fully developed, the GPTAD may provide a means of clot removal from vessels in the human arterial system e.g. the cerebral vessels. The modelling that we present in this paper, taking into account the catheter, the probe, artery, blood clot and adhesion forces, may assist with the optimisation of the design of the GPTAD probe . In the model used for the simulation both mechanical and hydraulic aspects have been considered with the purpose of combining the effect of the fluid-blood transmission for the different sections of the vein and the cathete
    corecore