37 research outputs found
Effective-Range Expansion of the Neutron-Deuteron Scattering Studied by a Quark-Model Nonlocal Gaussian Potential
The S-wave effective range parameters of the neutron-deuteron (nd) scattering
are derived in the Faddeev formalism, using a nonlocal Gaussian potential based
on the quark-model baryon-baryon interaction fss2. The spin-doublet low-energy
eigenphase shift is sufficiently attractive to reproduce predictions by the
AV18 plus Urbana three-nucleon force, yielding the observed value of the
doublet scattering length and the correct differential cross sections below the
deuteron breakup threshold. This conclusion is consistent with the previous
result for the triton binding energy, which is nearly reproduced by fss2
without reinforcing it with the three-nucleon force.Comment: 21 pages, 6 figures and 6 tables, submitted to Prog. Theor. Phy
Asparagine and glutamine side-chain conformation in solution and crystal: A comparison for hen egg-white lysozyme using residual dipolar couplings
Experimental (15)N-(1)H and (1)H-(1)H residual dipolar couplings (RDCs) for the asparagine (Asn) and glutamine (Gln) side chains of hen egg-white lysozyme are measured and analysed in conjunction with (1)N relaxation data, information about chi(1) torsion angles in solution and molecular dynamics simulations. The RDCs are compared to values predicted from 16 high-resolution crystal structures. Two distinct groups of Asn and Gln side chains are identified. The first contains residues whose side chains show a fixed, relatively rigid, conformation in solution. For these residues there is good agreement between the experimental and predicted RDCs. This agreement improves when the experimental order parameter, S, is included in the calculation of the RDCs from the crystal structures. The comparison of the experimental RDCs with values calculated from the X-ray structures shows that the similarity between the oxygen and nitrogen electron densities is a limitation to the correct assignment of the Asn and Gln side-chain orientation in X-ray structures. In the majority of X-ray structures a 180 degrees rotation about chi(2) or chi(3), leading to the swapping of N(delta/epsilon 2) and O(delta/epsilon 1), is necessary for at least one Asn or Gln residue in order to achieve good agreement between experimental and predicted RDCs. The second group contains residues whose side chains do not adopt a single, well-defined, conformation in solution. These residues do not show a correlation between the experimental and predicted RDCs. In many cases the family of crystal structures shows a range of orientations for these side chains, but in others the crystal structures show a well-defined side-chain position. In the latter case, this is found to arise from crystallographic contacts and does not represent the behaviour of the side chain in solution
Plasticity of the TSG-6 HA-binding loop and mobility in the TSG-6-HA complex revealed by NMR and X-ray crystallography.
Tumour necrosis factor-stimulated gene-6 (TSG-6) is a glycosaminoglycan-binding protein expressed during inflammatory and inflammation-like processes. Previously NMR structures were calculated for the Link module of TSG-6 (Link_TSG6) in its free state and when bound to an octasaccharide of hyaluronan (HA(8)). Heparin was found to compete for HA binding even though it interacts at a site that is distinct from the HA-binding surface. Here we present crystallography data on the free protein, and (15)N NMR relaxation data for the uncomplexed and HA(8)-bound forms of Link_TSG6. Although the Link module is comparatively rigid overall, the free protein shows a high degree of mobility in the beta4/beta5 loop and at the Cys47-Cys68 disulfide bond, both of which are regions involved in HA binding. When bound to HA(8), this dynamic behaviour is dampened, but not eliminated, suggesting a degree of dynamic matching between the protein and sugar that may decrease the entropic penalty of complex formation. A further highly dynamic residue is Lys54, which is distant from the HA-binding site, but was previously shown to be involved in heparin binding. When HA is bound, Lys54 becomes less mobile, providing evidence for an allosteric effect linking the HA and heparin-binding sites. A mechanism is suggested involving the beta2-strand and alpha2-helix. The crystal structure of free Link_TSG6 contains five molecules in the asymmetric unit that are highly similar to the NMR structure and support the dynamic behaviour seen near the HA-binding site: they show little or no electron density for the beta4/beta5 loop and display multiple conformations for the Cys47-Cys68 disulfide bond. The crystal structures were used in docking calculations with heparin. An extended interface between a Link_TSG6 dimer and heparin 11-mer was identified that is in excellent agreement with previous mutagenesis and calorimetric data, providing the basis for further investigation of this interaction
The conformation of bacteriorhodopsin loops in purple membranes resolved by solid-state MAS NMR spectroscopy.
Making complements: Solid-state MAS NMR spectra of bacteriorhodopsin in its native purple membrane environment can be used to complement crystallographic studies of the protein by validating and redefining the (possibly distorted) loop structures. Backbone dihedral angles were extracted from the chemical shifts and compared to the crystal structures. Where there are conformational differences, the dihedral angles were used to recalculate the loop structure (see picture). © 2011 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim