401 research outputs found
A new Euclidean tight 6-design
We give a new example of Euclidean tight 6-design in .Comment: 9 page
On Turing dynamical systems and the Atiyah problem
Main theorems of the article concern the problem of M. Atiyah on possible
values of l^2-Betti numbers. It is shown that all non-negative real numbers are
l^2-Betti numbers, and that "many" (for example all non-negative algebraic)
real numbers are l^2-Betti numbers of simply connected manifolds with respect
to a free cocompact action. Also an explicit example is constructed which leads
to a simply connected manifold with a transcendental l^2-Betti number with
respect to an action of the threefold direct product of the lamplighter group
Z/2 wr Z. The main new idea is embedding Turing machines into integral group
rings. The main tool developed generalizes known techniques of spectral
computations for certain random walk operators to arbitrary operators in
groupoid rings of discrete measured groupoids.Comment: 35 pages; essentially identical to the published versio
Largeness and SQ-universality of cyclically presented groups
Largeness, SQ-universality, and the existence of free subgroups of rank 2 are measures of the complexity of a finitely presented group. We obtain conditions under which a cyclically presented group possesses one or more of these properties. We apply our results to a class of groups introduced by Prishchepov which contains, amongst others, the various generalizations of Fibonacci groups introduced by Campbell and Robertson
On the expressiveness of forwarding in higher-order communication
Abstract. In higher-order process calculi the values exchanged in communications may contain processes. There are only two capabilities for received processes: execution and forwarding. Here we propose a limited form of forwarding: output actions can only communicate the parallel composition of statically known closed processes and processes received through previously executed input actions. We study the expressiveness of a higher-order process calculus featuring this style of communication. Our main result shows that in this calculus termination is decidable while convergence is undecidable.
Peripheral fillings of relatively hyperbolic groups
A group theoretic version of Dehn surgery is studied. Starting with an
arbitrary relatively hyperbolic group we define a peripheral filling
procedure, which produces quotients of by imitating the effect of the Dehn
filling of a complete finite volume hyperbolic 3--manifold on the
fundamental group . The main result of the paper is an algebraic
counterpart of Thurston's hyperbolic Dehn surgery theorem. We also show that
peripheral subgroups of 'almost' have the Congruence Extension Property and
the group is approximated (in an algebraic sense) by its quotients obtained
by peripheral fillings. Various applications of these results are discussed.Comment: The difference with the previous version is that Proposition 3.2 is
proved for quasi--geodesics instead of geodesics. This allows to simplify the
exposition in the last section. To appear in Invent. Mat
Universal deformation rings for the symmetric group S_5 and one of its double covers
Let denote the symmetric group on 5 letters, and let denote
a non-trivial double cover of whose Sylow 2-subgroups are generalized
quaternion. We determine the universal deformation rings and
for each mod 2 representation of that belongs to the
principal 2-modular block of and whose stable endomorphism ring is given
by scalars when it is inflated to . We show that for these , a
question raised by the first author and Chinburg concerning the relation of the
universal deformation ring of to the Sylow 2-subgroups of and
, respectively, has an affirmative answer.Comment: 10 pages, 5 figures; the proof of Theorem 1.1(a) has been shortene
On Measuring Non-Recursive Trade-Offs
We investigate the phenomenon of non-recursive trade-offs between
descriptional systems in an abstract fashion. We aim at categorizing
non-recursive trade-offs by bounds on their growth rate, and show how to deduce
such bounds in general. We also identify criteria which, in the spirit of
abstract language theory, allow us to deduce non-recursive tradeoffs from
effective closure properties of language families on the one hand, and
differences in the decidability status of basic decision problems on the other.
We develop a qualitative classification of non-recursive trade-offs in order to
obtain a better understanding of this very fundamental behaviour of
descriptional systems
Well-quasi-ordering versus clique-width : new results on bigenic classes.
Daligault, Rao and Thomassé conjectured that if a hereditary class of graphs is well-quasi-ordered by the induced subgraph relation then it has bounded clique-width. Lozin, Razgon and Zamaraev recently showed that this conjecture is not true for infinitely defined classes. For finitely defined classes the conjecture is still open. It is known to hold for classes of graphs defined by a single forbidden induced subgraph H, as such graphs are well-quasi-ordered and are of bounded clique-width if and only if H is an induced subgraph of P4P4. For bigenic classes of graphs i.e. ones defined by two forbidden induced subgraphs there are several open cases in both classifications. We reduce the number of open cases for well-quasi-orderability of such classes from 12 to 9. Our results agree with the conjecture and imply that there are only two remaining cases to verify for bigenic classes
Locally finite groups containing a 2 -element with Chernikov centralizer
Suppose that a locally finite group G has a 2-element g with Chernikov centralizer. It is proved that if the involution in ⟨g⟩ has nilpotent centralizer, then G has a soluble subgroup of finite index
- …