29 research outputs found
Characterization of On-Orbit GPS Transmit Antenna Patterns for Space Users
The GPS Antenna Characterization Experiment (GPS ACE) has made extensive observations of GPS L1 signals received at geosynchronous (GEO) altitude, with the objective of developing comprehensive models of the signal levels and signal performance in the GPS transmit antenna side lobes. The experiment was originally motivated by the fact that data on the characteristics and performance of the GPS signals available in GEO and other high Earth orbits was limited. The lack of knowledge of the power and accuracy of the side lobe signals on-orbit added risk to missions seeking to employ the side lobes to meet navigation requirements or improve performance. The GPS ACE Project lled that knowledge gap through a collaboration between The Aerospace Corporation and NASA Goddard Space Fight Center to collect and analyze observations from GPS side lobe transmissions to a satellite at GEO using a highly-sensitive GPS receiver installed at the ground station. The GPS ACE architecture has been in place collecting observations of the GPS constellation with extreme sensitivity for several years. This sensitivity combined with around-the-clock, all-in-view processing enabled full azimuthal coverage of the GPS transmit gain patterns over time to angles beyond 90 degrees off-boresight. Results discussed in this paper include the reconstructed transmit gain patterns, with comparisons to available pre-fight gain measurements from the GPS vehicle contractors. For GPS blocks with extensive ground measurements, the GPS ACE results show remarkable agreement with ground based measurements. For blocks without extensive ground measurements, the GPS ACE results provide the only existing assessments of the full transmit gain patterns. The paper also includes results of pseudorange deviation analysis to assess systematic errors associated with GPS side lobe signals
Serendipitous Geodesy from Bennu's Short-Lived Moonlets
The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx; or OREx) spacecraft arrived at its target, near-Earth asteroid (101955) Bennu, on December 3, 2018. The OSIRIS-REx spacecraft has since collected a wealth of scientific information in order to select a suitable site for sampling. Shortly after insertion into orbit on December 31, 2018, particles were identified in starfield images taken by the navigation camera (NavCam 1). Several groups within the OSlRlS-REx team analyzed the particle data in an effort to better understand this newfound activity of Bennu and to investigate the potential sensitivity of the particles to Bennu's geophysical parameters. A number of particles were identified through automatic and manual methods in multiple images, which could be turned into short sequences of optical tracking observations. Here, we discuss the precision orbit determination (OD) effort focused on these particles at NASA GSFC, which involved members of the Independent Navigation Team (INT) in particular. The particle data are combined with other OSIRIS-REx tracking data (radiometric from OSN and optical landmark data) using the NASA GSFC GEODYN orbit determination and geodetic parameter estimation software. We present the results of our study, particularly those pertaining to the gravity field of Bennu. We describe the force modeling improvements made to GEODYN specifically for this work, e.g., with a raytracing-based modeling of solar radiation pressure. The short-lived, low-flying moonlets enable us to determine a gravity field model up to a relatively high degree and order: at least degree 6 without constraints, and up to degree 10 when applying Kaula-like regularization. We can backward- and forward-integrate the trajectory of these particles to the ejection and landing sites on Bennu. We assess the recovered field by its impact on the OSIRIS-REx trajectory reconstruction and prediction quality in the various mission phases (e.g., Orbital A, Detailed Survey, and Orbital B)
Functional and perceptive differences between conventional and advanced ankle foot orthoses in community ambulators post-limb trauma: the injuries managed with advanced bracing of the lower extremity (IM ABLE) study
IntroductionMany military service members and civilians suffer from lower extremity trauma. Despite recent advancements in lower limb bracing technology, it remains unclear whether these newer advanced braces offer improved comfort and functionality compared to conventional options. The IDEO (Intrepid Dynamic Exoskeletal Orthosis), a type of “advanced” orthosis was developed to assist in maintaining high functional performance in patients who have experienced high-energy lower extremity trauma and underwent limb salvage surgeries.MethodsA cross-sector multi-site initiative was completed to study the efficacy of advanced ankle foot orthoses (AFO) for lower limb trauma and injury compared to a conventional AFO. Following fitting, training, and accommodation, the subjects were assessed in each AFO system for mobility, self-reported function, safety and pain, and preference.ResultsThey preferred the advanced over the conventional AFO and the mobility and exertion perception improved with the advanced AFO with no difference in pain or overall health status scores.DiscussionThus, an advanced AFO is an option for trauma affecting the lower limb. Long-term studies are required to better understand the accommodation and learning process of using an advanced AFO
Early Navigation Performance of the OSIRIS-REx Approach to Bennu
The New Frontiers-class OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) mission is the first American endeavor to return a sample from an asteroid. In preparation for retrieving the sample, OSIRIS-REx is conducting a campaign of challenging proximity-operations maneuvers and scientific observations, bringing the spacecraft closer and closer to the surface of near-Earth asteroid (101955) Bennu. Ultimately, the spacecraft will enter a 900-meter-radius orbit about Bennu and conduct a series of reconnaissance flybys of candidate sample sites before being guided into contact with the surface for the Touch and Go sample collection event. Between August and December 2018, the OSIRIS-REx team acquired the first optical observations of Bennu and used them for navigation. We conducted a series of maneuvers with the main engine, Trajectory Correction Maneuver, and Attitude Control System thruster sets to slow the OSIRIS-REx approach to Bennu and achieve rendezvous on December 3, 2018. This paper describes the trajectory design, navigation conops, and key navigation results from the Approach phase of the OSIRIS-REx mission
Effect of trinucleotide repeat expansion on the expression of TCF4 mRNA in Fuchs' endothelial corneal dystrophy
Purpose: CTG trinucleotide repeat (TNR) expansion is frequently found in transcription factor 4 (TCF4) in Fuchs' endothelial corneal dystrophy (FECD), though the effect of TNR expansion on FECD pathophysiology remains unclear. The purpose of this study was to evaluate the effect of TNR expansion on TCF4 expression in corneal endothelium of patients with FECD.
Methods: Peripheral blood DNA and Descemet membrane with corneal endothelium were obtained from 203 German patients with FECD. The CTG TNR repeat length in TCF4 was determined by short tandem repeat (STR) assays and Southern blotting using genomic DNA. Genotyping of rs613872 in TCF4 was performed by PCR. TCF4 mRNA levels in corneal endothelium were evaluated by quantitative PCR using three different probes. Control corneal endothelial samples were obtained from 35 non-FECD subjects.
Results: The STR assay and Southern blotting showed that 162 of the 203 patients with FECD (80%) harbored CTG trinucleotide repeat lengths larger than 50. Quantitative PCR using all three probes demonstrated that TCF4 mRNA is significantly upregulated in the corneal endothelium of patients with FECD, regardless of the presence of TNR expansion. However, the length of the TNR tended to show a positive correlation with TCF4 expression level. No correlation was shown between the genotype of TCF4 SNP, rs613872, and the level of TCF4 expression.
Conclusions: Our findings showed that TCF4 mRNA is upregulated in the corneal endothelium of patients with FECD. Further studies on the effects of TCF4 upregulation on corneal endothelial cell function will aid in understanding the pathophysiology of FECD
Pilot study of sources and concentrations of size-resolved airborne particles in a neonatal intensive care unit
Infants in neonatal intensive care units (NICUs) are vulnerable to environmental stressors. Few studies have reported on airborne particles in the NICU environment. During a four-day pilot study in a private-style NICU, we measured size-resolved particle number (PN) concentrations with 1-min resolution. The investigation included simultaneous sampling in an unoccupied baby room and in an incubator of an otherwise normally functioning NICU. Background submicron (0.3-1 µm) particle levels in the room were 3-4 orders of magnitude lower than outdoors, owing to high-efficiency particulate filtration of supply air. Airborne supermicron particles were detected in the room; their presence was attributed primarily to emissions from occupant movements. The fraction of in-room PN detected within an infant incubator ranged from 0.2 for particles >10 µm to 0.6 for particles with diameter 0.3-0.5 µm. The incubator humidifier was a strong additional source of particles smaller than 5 µm. Activities by researchers, designed to simulate caregiver visits, were associated with elevated particle concentrations across all measured size ranges, and were particularly discernible among larger particles. Concentrations increased with the number of occupants and with the duration and vigor of activities. The highest levels were observed when fabrics were handled. Against the low background in this environment, even small occupancy-associated perturbations – such as from a brief entry – were discernible. Measurements from a second NICU in a different US region were found to be broadly similar. A notable difference was higher submicron particle levels in the second NICU, attributed to elevated outdoor pollution
Compound heterozygosity with a novel S222N GALT mutation leads to atypical galactosemia with loss of GALT activity in erythrocytes but little evidence of clinical disease
Galactosemia is an inborn error of galactose metabolism caused by mutations in the GALT gene. Though early detection and galactose restriction prevent severe liver disease, affected individuals have persistently elevated biomarkers and often neuro-developmental symptoms. We present a teenage compound heterozygote for a known pathogenic mutation (H132Q) and a novel variant of unknown significance (S222N), with nearly absent erythrocyte GALT enzyme activity but normal biomarkers and only mild anxiety despite diet non-adherence. This case is similar to a previously reported S135L mutation. In this report we investigate the novel S222N variant and critically evaluate a clinically puzzling case
Biochemical and computational analyses of two phenotypically related GALT mutations (S222N and S135L) that lead to atypical galactosemia
Galactosemia is a metabolic disorder caused by mutations in the GALT gene [1,2]. We encountered a patient heterozygous for a known pathogenic H132Q mutation and a novel S222N variant of unknown significance [3]. Reminiscent of patients with the S135L mutation, our patient had loss of GALT enzyme activity in erythrocytes but a very mild clinical phenotype [3–8]. We performed splicing experiments and computational structural analyses to investigate the role of the novel S222N variant. Alamut software data predicted loss of splicing enhancers for the S222N and S135L mutations [9,10]. A cDNA library was generated from our patient׳s RNA to investigate for splicing errors, but no change in transcript length was seen [3]. In silico structural analysis was performed to investigate enzyme stability and attempt to understand the mechanism of the atypical galactosemia phenotype. Stability results are publicly available in the GALT Protein Database 2.0 [11–14]. Animations were created to give the reader a dynamic view of the enzyme structure and mutation locations. Protein database files and python scripts are included for further investigation
Functional Performance Differences between the Genium and C-Leg Prosthetic Knees and Intact Knees
Microprocessor prosthetic knees (MPKs) have advanced technologically, offering new features to decrease impairment and activity limitations for persons with transfemoral amputation (TFA). The Genium knee is functionally untested, and functional differences between it and intact knees are unknown. This study sought to determine whether Genium use improves functional performance compared with the C-Leg. A randomized experimental crossover design was used, with a cross-section of five nonamputee controls for comparison to norÂmal. Twenty community-ambulating persons with TFA were trained and tested for accommodation with study components. All subjects (n = 25) were assessed using the Continuous-Scale Physical Functional Performance-10 (CS-PFP10) assessment. Subjects with TFA used both MPK systems. Genium use improved upper-body flexibility, balance, and endurance domain scores (7.0%–8.4%, p \u3c / = 0.05) compared with the C-Leg. Only in the endurance domain did Genium users score sigÂnificantly lower than nonamputees (22.4%, p = 0.05). Comparing the C-Leg with nonamputees, CS-PFP10 total (2.0%–24.4%, p = 0.03) and all domains except upper-body strength were lower than nonamputees (–13.4% to –28.9%, p \u3c / = 0.05). Nonetheless, regardless of knee condition, subjects with TFAs did not equal or surpass nonamputees in any functional domain, suggesting room for improvements in TFA functional performance
Functional Performance Differences between the Genium and C-Leg Prosthetic Knees and Intact Knees
Microprocessor prosthetic knees (MPKs) have advanced technologically, offering new features to decrease impairment and activity limitations for persons with transfemoral amputation (TFA). The Genium knee is functionally untested, and functional differences between it and intact knees are unknown. This study sought to determine whether Genium use improves functional performance compared with the C-Leg. A randomized experimental crossover design was used, with a cross-section of five nonamputee controls for comparison to norÂmal. Twenty community-ambulating persons with TFA were trained and tested for accommodation with study components. All subjects (n = 25) were assessed using the Continuous-Scale Physical Functional Performance-10 (CS-PFP10) assessment. Subjects with TFA used both MPK systems. Genium use improved upper-body flexibility, balance, and endurance domain scores (7.0%–8.4%, p \u3c / = 0.05) compared with the C-Leg. Only in the endurance domain did Genium users score sigÂnificantly lower than nonamputees (22.4%, p = 0.05). Comparing the C-Leg with nonamputees, CS-PFP10 total (2.0%–24.4%, p = 0.03) and all domains except upper-body strength were lower than nonamputees (–13.4% to –28.9%, p \u3c / = 0.05). Nonetheless, regardless of knee condition, subjects with TFAs did not equal or surpass nonamputees in any functional domain, suggesting room for improvements in TFA functional performance