5 research outputs found
Development of an automated detection algorithm for patient motion blur in digital mammograms
The purpose is to develop and validate an automated method for detecting image unsharpness caused by patient motion blur in digital mammograms. The goal is that such a tool would facilitate immediate re-taking of blurred images, which has the potential to reduce the number of recalled examinations, and to ensure that sharp, high-quality mammograms are presented for reading. To meet this goal, an automated method was developed based on interpretation of the normalized image Wiener Spectrum. A preliminary algorithm was developed using 25 cases acquired using a single vendor system, read by two expert readers identifying the presence of blur, location, and severity. A predictive blur severity score was established using multivariate modeling, which had an adjusted coefficient of determination, R2 =0.63±0.02, for linear regression against the average reader-scored blur severity. A heatmap of the relative blur magnitude showed good correspondence with reader sketches of blur location, with a Spearman rank correlation of 0.70 between the algorithmestimated area fraction with blur and the maximum of the blur area fraction categories of the two readers. Given these promising results, the algorithm-estimated blur severity score and heatmap are proposed to be used to aid observer interpretation. The use of this automated blur analysis approach, ideally with feedback during an exam, could lead to a reduction in repeat appointments for technical reasons, saving time, cost, potential anxiety, and improving image quality for accurate diagnosis.</p
Screen-film mammographic density and breast cancer risk: a comparison of the volumetric standard mammogram form and the interactive threshold measurement methods.
BACKGROUND: Mammographic density is a strong risk factor for breast cancer, usually measured by an area-based threshold method that dichotomizes the breast area on a mammogram into dense and nondense regions. Volumetric methods of breast density measurement, such as the fully automated standard mammogram form (SMF) method that estimates the volume of dense and total breast tissue, may provide a more accurate density measurement and improve risk prediction. METHODS: In 2000-2003, a case-control study was conducted of 367 newly confirmed breast cancer cases and 661 age-matched breast cancer-free controls who underwent screen-film mammography at several centers in Toronto, Canada. Conditional logistic regression was used to estimate odds ratios of breast cancer associated with categories of mammographic density, measured with both the threshold and the SMF (version 2.2beta) methods, adjusting for breast cancer risk factors. RESULTS: Median percent density was higher in cases than in controls for the threshold method (31% versus 27%) but not for the SMF method. Higher correlations were observed between SMF and threshold measurements for breast volume/area (Spearman correlation coefficient = 0.95) than for percent density (0.68) or for absolute density (0.36). After adjustment for breast cancer risk factors, odds ratios of breast cancer in the highest compared with the lowest quintile of percent density were 2.19 (95% confidence interval, 1.28-3.72; P(t) <0.01) for the threshold method and 1.27 (95% confidence interval, 0.79-2.04; Pt = 0.32) for the SMF method. CONCLUSION: Threshold percent density is a stronger predictor of breast cancer risk than the SMF version 2.2beta method in digitized images
Technical Note: Validation of two methods to determine contact area between breast and compression paddle in mammography
Purpose: To assess the accuracy of two methods of determining the contact area between the compression paddle and the breast in mammography. An accurate method to determine the contact area is essential to accurately calculate the average compression pressure applied by the paddle. Methods: For a set of 300 breast compressions, we measured the contact areas between breast and paddle, both capacitively using a transparent foil with indium-tin-oxide (ITO) coating attached to the paddle, and retrospectively from the obtained mammograms using image processing software (Volpara Enterprise, algorithm version 1.5.2). A gold standard was obtained from video images of the compressed breast. During each compression, the breast was illuminated from the sides in order to create a dark shadow on the video image where the breast was in contact with the compression paddle. We manually segmented the shadows captured at the time of x-ray exposure and measured their areas. Results: We found a strong correlation between the manual segmentations and the capacitive measurements [r = 0.989, 95% CI (0.987, 0.992)] and between the manual segmentations and the image processing software [r = 0.978, 95% CI (0.972, 0.982)]. Bland-Altman analysis showed a bias of -0.0038 dm(2) for the capacitive measurement (SD 0.0658, 95% limits of agreement [-0.1329, 0.1252]) and -0.0035 dm(2) for the image processing software [SD 0.0962, 95% limits of agreement (-0.1921, 0.1850)]. Conclusions: The size of the contact area between the paddle and the breast can be determined accurately and precisely, both in real-time using the capacitive method, and retrospectively using image processing software. This result is beneficial for scientific research, data analysis and quality control systems that depend on one of these two methods for determining the average pressure on the breast during mammographic compression. (C) 2017 Sigmascreening B.V. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicin