1,011 research outputs found
CONTEST : a Controllable Test Matrix Toolbox for MATLAB
Large, sparse networks that describe complex interactions are a common feature across a number of disciplines, giving rise to many challenging matrix computational tasks. Several random graph models have been proposed that capture key properties of real-life networks. These models provide realistic, parametrized matrices for testing linear system and eigenvalue solvers. CONTEST (CONtrollable TEST matrices) is a random network toolbox for MATLAB that implements nine models. The models produce unweighted directed or undirected graphs; that is, symmetric or unsymmetric matrices with elements equal to zero or one. They have one or more parameters that affect features such as sparsity and characteristic pathlength and all can be of arbitrary dimension. Utility functions are supplied for rewiring, adding extra shortcuts and subsampling in order to create further classes of networks. Other utilities convert the adjacency matrices into real-valued coefficient matrices for naturally arising computational tasks that reduce to sparse linear system and eigenvalue problems
Eyes wide shut? UK consumer perceptions on aviation climate impacts and travel decisions to New Zealand
The purview of climate change concern has implicated air travel, as evidenced in a growing body of academic literature concerned with aviation CO2 emissions. This article assesses the relevance of climate change to long haul air travel decisions to New Zealand for United Kingdom consumers. Based on 15 semi-structured open-ended interviews conducted in Bournemouth, UK during June 2009, it was found that participants were unlikely to forgo potential travel decisions to New Zealand because of concern over air travel emissions. Underpinning the interviewees’ understandings and responses to air travel’s climate impact was a spectrum of awareness and attitudes to air travel and climate change. This spectrum ranged from individuals who were unaware of air travel’s climate impact to those who were beginning to consume air travel with a ‘carbon conscience’. Within this spectrum were some who were aware of the impact but not willing to change their travel behaviours at all. Rather than implicating long haul air travel, the empirical evidence instead exemplifies changing perceptions towards frequent short haul air travel and voices calls for both government and media in the UK to deliver more concrete messages on air travel’s climate impact
Recommended from our members
Communicability across evolving networks
Many natural and technological applications generate time ordered sequences of networks, defined over a fixed set of nodes; for example time-stamped information about ‘who phoned who’ or ‘who came into contact with who’ arise naturally in studies of communication and the spread of disease. Concepts and algorithms for static networks do not immediately carry through to this dynamic setting. For example, suppose A and B interact in the morning, and then B and C interact in the afternoon. Information, or disease, may then pass from A to C, but not vice versa. This subtlety is lost if we simply summarize using the daily aggregate network given by the chain A-B-C. However, using a natural definition of a walk on an evolving network, we show that classic centrality measures from the static setting can be extended in a computationally convenient manner. In particular, communicability indices can be computed to summarize the ability of each node to broadcast and receive information. The computations involve basic operations in linear algebra, and the asymmetry caused by time’s arrow is captured naturally through the non-mutativity of matrix-matrix multiplication. Illustrative examples are given for both synthetic and real-world communication data sets. We also discuss the use of the new centrality measures for real-time monitoring and prediction
Discrete Razumikhin-type technique and stability of the Euler-Maruyama method to stochastic functional differential equations
A discrete stochastic Razumikhin-type theorem is established to investigate whether the Euler--Maruyama (EM) scheme can reproduce the moment exponential stability of exact solutions of stochastic functional differential equations (SFDEs). In addition, the Chebyshev inequality and the Borel-Cantelli lemma are applied to show the almost sure stability of the EM approximate solutions of SFDEs. To show our idea clearly, these results are used to discuss stability of numerical solutions of two classes of special SFDEs, including stochastic delay differential equations (SDDEs) with variable delay and stochastically perturbed equations
Fast linear algebra is stable
In an earlier paper, we showed that a large class of fast recursive matrix
multiplication algorithms is stable in a normwise sense, and that in fact if
multiplication of -by- matrices can be done by any algorithm in
operations for any , then it can be done
stably in operations for any . Here we extend
this result to show that essentially all standard linear algebra operations,
including LU decomposition, QR decomposition, linear equation solving, matrix
inversion, solving least squares problems, (generalized) eigenvalue problems
and the singular value decomposition can also be done stably (in a normwise
sense) in operations.Comment: 26 pages; final version; to appear in Numerische Mathemati
'The show must go on': Event dramaturgy as consolidation of community
Event dramaturgy and cultural performance have not been examined in the literature from a strategic standpoint of fostering the social value of events. Thus, the purpose of this study was to explore the case of the Water Carnival, a celebratory event in a rural community of Southwest Texas, demonstrating the essence of this event as a symbolic social space, wherein event participants instantiate a shared and valued sense of community. A hermeneutical approach was employed, interpreting the event and its symbolisms as a text, combined with findings from ethnographic fieldwork, including participant observation, in-depth interviews and analysis of archival documents. The study examines the ways that dramaturgy in the Water Carnival helps frame the ongoing public discourse for community improvement and enhances social capital. The implications of the study for social leverage of events are discussed. It is suggested that a foundation for strategic social planning is the understanding of events as symbolic social spaces and their embeddedness in community development, which can be accomplished when events are pertinent to public discourse, address community issues, represent an inclusive range of stakeholders, and promote cooperation
Tempo and mode of performance evolution across multiple independent origins of adhesive toe pads in lizards
Understanding macroevolutionary dynamics of trait evolution is an important endeavor in evolutionary biology. Ecological opportunity can liberate a trait as it diversifies through trait space, while genetic and selective constraints can limit diversification. While many studies have examined the dynamics of morphological traits, diverse morphological traits may yield the same or similar performance and as performance is often more proximately the target of selection, examining only morphology may give an incomplete understanding of evolutionary dynamics. Here, we ask whether convergent evolution of pad‐bearing lizards has followed similar evolutionary dynamics, or whether independent origins are accompanied by unique constraints and selective pressures over macroevolutionary time. We hypothesized that geckos and anoles each have unique evolutionary tempos and modes. Using performance data from 59 species, we modified Brownian motion (BM) and Ornstein–Uhlenbeck (OU) models to account for repeated origins estimated using Bayesian ancestral state reconstructions. We discovered that adhesive performance in geckos evolved in a fashion consistent with Brownian motion with a trend, whereas anoles evolved in bounded performance space consistent with more constrained evolution (an Ornstein–Uhlenbeck model). Our results suggest that convergent phenotypes can have quite distinctive evolutionary patterns, likely as a result of idiosyncratic constraints or ecological opportunities
Googling the brain: discovering hierarchical and asymmetric network structures, with applications in neuroscience
Hierarchical organisation is a common feature of many directed networks arising in nature and technology. For example, a well-defined message-passing framework based on managerial status typically exists in a business organisation. However, in many real-world networks such patterns of hierarchy are unlikely to be quite so transparent. Due to the nature in which empirical data is collated the nodes will often be ordered so as to obscure any underlying structure. In addition, the possibility of even a small number of links violating any overall “chain of command” makes the determination of such structures extremely challenging. Here we address the issue of how to reorder a directed network in order to reveal this type of hierarchy. In doing so we also look at the task of quantifying the level of hierarchy, given a particular node ordering. We look at a variety of approaches. Using ideas from the graph Laplacian literature, we show that a relevant discrete optimization problem leads to a natural hierarchical node ranking. We also show that this ranking arises via a maximum likelihood problem associated with a new range-dependent hierarchical random graph model. This random graph insight allows us to compute a likelihood ratio that quantifies the overall tendency for a given network to be hierarchical. We also develop a generalization of this node ordering algorithm based on the combinatorics of directed walks. In passing, we note that Google’s PageRank algorithm tackles a closely related problem, and may also be motivated from a combinatoric, walk-counting viewpoint. We illustrate the performance of the resulting algorithms on synthetic network data, and on a real-world network from neuroscience where results may be validated biologically
Robust high-dimensional precision matrix estimation
The dependency structure of multivariate data can be analyzed using the
covariance matrix . In many fields the precision matrix
is even more informative. As the sample covariance estimator is singular in
high-dimensions, it cannot be used to obtain a precision matrix estimator. A
popular high-dimensional estimator is the graphical lasso, but it lacks
robustness. We consider the high-dimensional independent contamination model.
Here, even a small percentage of contaminated cells in the data matrix may lead
to a high percentage of contaminated rows. Downweighting entire observations,
which is done by traditional robust procedures, would then results in a loss of
information. In this paper, we formally prove that replacing the sample
covariance matrix in the graphical lasso with an elementwise robust covariance
matrix leads to an elementwise robust, sparse precision matrix estimator
computable in high-dimensions. Examples of such elementwise robust covariance
estimators are given. The final precision matrix estimator is positive
definite, has a high breakdown point under elementwise contamination and can be
computed fast
- …