2,899 research outputs found

    Comment on `Glassy Transition in a Disordered Model for the RNA Secondary Structure'

    Full text link
    In cond-mat/9907125 the low-temperature behavior of a model for RNA secondary structure was studied. It is claimed that the model exhibits a breaking of the replica symmetry, since the width of the distribution P(q) of overlaps may converge to a finite value at T=0. The authors used an exact enumeration method to obtain all ground states for a given RNA sequence. Because of the exponential growing degeneracy, only sequences up to length L=256 could be studied. Here it is shown that, in contrast to the previous results, by going to much larger sizes as L=2000 the variance coverges towards zero, i.e. P(q) is a delta-function in the thermodynamic limit.Comment: completely rewritten, comment to cond-mat/9907125 (PRL 84, 2026

    The advantages and disadvantages of horizontal gene transfer and the emergence of the first species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Horizontal Gene Transfer (HGT) is beneficial to a cell if the acquired gene confers a useful function, but is detrimental if the gene has no function, if it is incompatible with existing genes, or if it is a selfishly replicating mobile element. If the balance of these effects is beneficial on average, we would expect cells to evolve high rates of acceptance of horizontally transferred genes, whereas if it is detrimental, cells should reduce the rate of HGT as far as possible. It has been proposed that the rate of HGT was very high in the early stages of prokaryotic evolution, and hence there were no separate lineages of organisms. Only when the HGT rate began to fall, would lineages begin to emerge with their own distinct sets of genes. Evolution would then become more tree-like. This phenomenon has been called the Darwinian Threshold.</p> <p>Results</p> <p>We study a model for genome evolution that incorporates both beneficial and detrimental effects of HGT. We show that if rate of gene loss during genome replication is high, as was probably the case in the earliest genomes before the time of the last universal common ancestor, then a high rate of HGT is favourable. HGT leads to the rapid spread of new genes and allows the build-up of larger, fitter genomes than could be achieved by purely vertical inheritance. In contrast, if the gene loss rate is lower, as in modern prokaryotes, then HGT is, on average, unfavourable.</p> <p>Conclusions</p> <p>Modern cells should therefore evolve to reduce HGT if they can, although the prevalence of independently replicating mobile elements and viruses may mean that cells cannot avoid HGT in practice. In the model, natural selection leads to gradual improvement of the replication accuracy and gradual decrease in the optimal rate of HGT. By clustering genomes based on gene content, we show that there are no separate lineages of organisms when the rate of HGT is high; however, as the rate of HGT decreases, a tree-like structure emerges with well-defined lineages. The model therefore passes through a Darwinian Threshold.</p> <p>Reviewers</p> <p>This article was reviewed by Eugene V. Koonin, Anthony Poole and J. Peter Gogarten.</p

    Probing the Higgs mechanism via γγW+W\gamma\gamma\to W^+W^-

    Full text link
    We investigate the sensitivity of the reaction γγW+W\gamma\gamma\to W^+W^- to the Higgs sector based on the complete one-loop corrections in the minimal Standard Model and the gauged non-linear σ\sigma-model. While this sensitivity is very strong for the suppressed cross-section of equally polarized photons and longitudinal W bosons, it is only marginal for the dominant mode of transverse polarizations. The corrections within the σ\sigma-model turn out to be UV-finite in accordance with the absence of \log\MH terms in the Standard Model with a heavy Higgs boson.Comment: 12 pages uuencoded postscrip

    The Triple Higgs Boson Self-Coupling at Future Linear e+e- Colliders Energies: ILC and CLIC

    Full text link
    We analyzed the triple Higgs boson self-coupling at future e+ee^{+}e^{-} colliders energies, with the reactions e+ebbˉHH,ttˉHHe^{+}e^{-}\to b \bar b HH, t \bar t HH. We evaluate the total cross-sections for both bbˉHHb\bar bHH and ttˉHHt\bar tHH, and calculate the total number of events considering the complete set of Feynman diagrams at tree-level. We vary the triple coupling κλ3H\kappa\lambda_{3H} within the range κ=1\kappa=-1 and +2. The numerical computation is done for the energies expected to be available at a possible Future Linear e+ee^{+}e^{-} Collider with a center-of-mass energy 800,1000,1500800, 1000, 1500 GeVGeV and a luminosity 1000 fb1fb^{-1}. Our analysis is also extended to a center-of-mass energy 3 TeVTeV and luminosities of 1000 fb1fb^{-1} and 5000 fb1fb^{-1}. We found that for the process e+ebbˉHHe^{+}e^{-}\to b \bar b HH, the complete calculation differs only by 3% from the approximate calculation e+eZHH(Zbbˉ)e^{+}e^{-}\to ZHH(Z\to b\bar b), while for the process e+ettˉHHe^{+}e^{-}\to t \bar tHH, the expected number of events, considering the decay products of both tt and HH, is not enough to obtain an accurate determination of the triple Higgs boson self-coupling.Comment: 19 pages, 12 figure

    Possibility of the new type phase transition

    Full text link
    The scalar field theory and the scalar electrodynamics quantized in the flat gap are considered. The dynamical effects arising due to the boundary presence with two types of boundary conditions (BC) satisfied by scalar fields are studied. It is shown that while the Neumann BC lead to the usual scalar field mass generation, the Dirichlet BC give rise to the dynamical mechanism of spontaneous symmetry breaking. Due to the later, there arises the possibility of the new type phase transition from the normal to spontaneously broken phase. The decreasing in the characteristic size of the quantization region (the gap size here) and increasing in the temperature compete with each other, tending to transport the system in the spontaneously broken and in the normal phase, respectively. The system evolves with a combined parameter, simultaneously reflecting the change in temperature and in the size. As a result, at the critical value of this parameter there occurs the phase transition from the normal phase to the spontaneously broken one. In particular, the usual massless scalar electrodynamics transforms to the Higgs model

    Theoretical predictions for the direct detection of neutralino dark matter in the NMSSM

    Full text link
    We analyse the direct detection of neutralino dark matter in the framework of the Next-to-Minimal Supersymmetric Standard Model. After performing a detailed analysis of the parameter space, taking into account all the available constraints from LEPII, we compute the neutralino-nucleon cross section, and compare the results with the sensitivity of detectors. We find that sizable values for the detection cross section, within the reach of dark matter detectors, are attainable in this framework. For example, neutralino-proton cross sections compatible with the sensitivity of present experiments can be obtained due to the exchange of very light Higgses with m_{h_1^0}\lsim 70 GeV. Such Higgses have a significant singlet composition, thus escaping detection and being in agreement with accelerator data. The lightest neutralino in these cases exhibits a large singlino-Higgsino composition, and a mass in the range 50\lsim m_{\tilde\chi_1^0}\lsim 100 GeV.Comment: Final version to appear in JHEP. References added. LaTeX, 53 pages, 23 figure

    Observation of Leggett's collective mode in a multi-band MgB2 superconductor

    Full text link
    We report observation of Leggett's collective mode in a multi-band MgB2 superconductor with T_c=39K arising from the fluctuations in the relative phase between two superconducting condensates. The novel mode is observed by Raman spectroscopy at 9.4 meV in the fully symmetric scattering channel. The observed mode frequency is consistent with theoretical considerations based on the first principle computations.Comment: Accepted for PR
    corecore