487 research outputs found
PAI-1 Expression Is Required for HDACi-Induced Proliferative Arrest in ras-Transformed Renal Epithelial Cells
Malignant transformation of mammalian cells with ras family oncogenes results in dramatic changes in cellular architecture and growth traits. The generation of flat revertants of v-K-ras-transformed renal cells by exposure to the histone deacetylase inhibitor sodium butyrate (NaB) was previously found to be dependent on transcriptional activation of the PAI-1 (SERPINE1) gene (encoding the type-1 inhibitor of urokinase and tissue-type plasminogen activators). NaB-initiated PAI-1 expression preceded induced cell spreading and entry into G1 arrest. To assess the relevance of PAI-1 induction to growth arrest in this cell system more critically, two complementary approaches were used. The addition of a stable, long half-life, recombinant PAI-1 mutant to PAI-1-deficient v-K-ras-/c-Ha-ras-transformants or to PAI-1 functionally null, NaB-resistant, 4HH cells (engineered by antisense knockdown of PAI-1 mRNA transcripts) resulted in marked cytostasis in the absence of NaB. The transfection of ras-transformed cells with the Rc/CMVPAI expression construct, moreover, significantly elevated constitutive PAI-1 synthesis (10- to 20-fold) with a concomitant reduction in proliferative rate. These data suggest that high-level PAI-1 expression suppresses growth of chronic ras-oncogene transformed cells and is likely a major cytostatic effector of NaB exposure
TGF-β1-Induced Expression of the Poor Prognosis SERPINE1/PAI-1 Gene Requires EGFR Signaling: A New Target for Anti-EGFR Therapy
Increased transforming growth factor-β (TGF-β) expression and epidermal growth factor receptor (EGFR) amplification accompany the emergence of highly aggressive human carcinomas. Cooperative signaling between these two growth factor/receptor systems promotes cell migration and synthesis of stromal remodeling factors (i.e., proteases, protease inhibitors) that, in turn, regulate tumor invasion, neo-angiogenesis and inflammation. ranscript profiling of transformed human cells revealed that genes encoding wound healing, matrix remodeling and cell cycle proteins (i.e., the “tissue repair” transcriptome) are significantly up-regulated early after growth factor stimulation. The major inhibitor of plasmin generation, plasminogen activator inhibitor-1 (PAI-1), is among the most highly induced transcripts during the phenotypic transition initiated by TGF-β maximal expression requires EGFR signaling. PAI-1 induction occurs early in the progression of incipient epidermal squamous cell carcinoma (SCC) and is a significant indicator of poor prognosis in epithelial malignancies. Mouse modeling and molecular genetic analysis of complex systems indicates that PAI-1 regulates the temporal/spatial control of pericellular proteolysis, promotes epithelial plasticity, inhibits capillary regression and facilitates stromal invasion. Defining TGF-β1-initiated signaling events that cooperate with an activated EGFR to impact the protease-protease inhibitor balance in the tumor microenvironment is critical to the development of novel therapies for the clinical management of human cancers
Complex Regulation of the Pericellular Proteolytic Microenvironment during Tumor Progression and Wound Repair: Functional Interactions between the Serine Protease and Matrix Metalloproteinase Cascades
Spatial and temporal regulation of the pericellular proteolytic environment by local growth factors, such as EGF and TGF-β, initiates a wide repertoire of cellular responses coupled to a plasmin/matrix metalloproteinase (MMP) dependent stromal-remodeling axis. Cell motility and invasion, tumor metastasis, wound healing, and organ fibrosis, for example, represent diverse events controlled by expression of a subset of genes that encode various classes of tissue remodeling proteins. These include members of the serine protease and MMP families that functionally constitute a complex system of interacting protease cascades and titrated by their respective inhibitors. Several structural components of the extracellular matrix are upregulated by TGF-β as are matrix-active proteases (e.g., urokinase (uPA), plasmin, MMP-1, -3, -9, -10, -11, -13, -14). Stringent controls on serine protease/MMP expression and their topographic activity are essential for maintaining tissue homeostasis. Targeting individual elements in this highly interactive network may lead to novel therapeutic approaches for the treatment of cancer, fibrotic diseases, and chronic wounds
PAI-1 is a Critical Upstream Regulator of the TGF-β1/EGF-Induced Invasive Phenotype in Mutant p53 Human Cutaneous Squamous Cell Carcinoma
The emergence of highly aggressive subtypes of human cutaneous squamous cell carcinoma (SCC) often reflects increased autocrine/paracrine TGF-β synthesis and epidermal growth factor receptor (EGFR) amplification. Cooperative TGF-β/EGFR signaling promotes cell migration and induces expression of both proteases and protease inhibitors that regulate stromal remodeling resulting in acquisition of an invasive phenotype. TGF-β1+EGF stimulation increases the production of several matrix metalloproteinases (MMPs) in human SCC. Among the most prominent is MMP-10 which is known to be elevated in SCC in situ. Activation of stromal plasminogen appears to be critical in triggering downstream MMP activity. Paradoxically, PAI-1, the major physiological inhibitor of plasmin generation, is also up-regulated under these conditions and is an early event in progression of incipient epidermal SCC. A model is proposed in which TGF-β1+EGF-dependent MMP-10 elevation directs focalized matrix remodeling events that promote epithelial cell plasticity and tissue invasion. Increased PAI-1 expression serves to temporally and spatially modulate plasmin-initiated pericellular proteolysis, further facilitating epithelial invasive potential. Defining the complex signaling mechanisms that maintain this elegant balance is critical to developing potential therapeutics for the treatment of human cutaneous malignancies
Yaws.
Yaws is a non-venereal endemic treponemal infection caused by Treponema pallidum sub-species pertenue, a spirochaete bacterium closely related to Treponema pallidum ssp. pallidum, the agent of venereal syphilis. Yaws is a chronic, relapsing disease predominantly affecting children living in certain tropical regions. It spreads by skin-to-skin contact and, like syphilis, occurs in distinct clinical stages. It causes lesions of the skin, mucous membranes and bones which, without treatment, can become chronic and destructive. Treponema pallidum ssp. pertenue, like its sexually-transmitted counterpart, is exquisitely sensitive to penicillin. Infection with yaws or syphilis results in reactive treponemal serology and there is no widely available test to distinguish between these infections. Thus, migration of people from yaws-endemic areas to developed countries may present clinicians with diagnostic dilemmas. We review the epidemiology, clinical presentation and treatment of yaws
PAI-1 Regulates the Invasive Phenotype in Human Cutaneous Squamous Cell Carcinoma
The emergence of highly aggressive subtypes of human cutaneous squamous cell carcinoma (SCC) often reflects increased autocrine/paracrine TGF-β synthesis and epidermal growth factor receptor (EGFR) amplification. Cooperative TGF-β/EGFR signaling promotes cell migration and induces expression of both proteases and protease inhibitors that regulate stromal remodeling resulting in the acquisition of an invasive phenotype. In one physiologically relevant model of human cutaneous SCC progression, TGF-β1+EGF stimulation increases the production of several matrix metalloproteinases (MMPs), among the most prominent of which is MMP-10—an MMP known to be elevated in SCC in situ. Activation of stromal plasminogen appears to be critical in triggering downstream MMP activity. Paradoxically, PAI-1, the major physiological inhibitor of plasmin generation, is also upregulated under these conditions and is an early event in progression of incipient epidermal SCC. One testable hypothesis proposes that TGF-β1+EGF-dependent MMP-10 elevation directs focalized matrix remodeling events that promote epithelial cell plasticity and tissue invasion. Increased PAI-1 expression serves to temporally and spatially modulate plasmin-initiated pericellular proteolysis, further facilitating epithelial invasive potential. Defining the complex signaling and transcriptional mechanisms that maintain this delicate balance is critical to developing targeted therapeutics for the treatment of human cutaneous malignancies
PAI-1: An Integrator of Cell Signaling and Migration
Cellular migration, over simple surfaces or through complex stromal barriers, requires coordination between detachment/re-adhesion cycles, involving structural components of the extracellular matrix and their surface-binding elements (integrins), and the precise regulation of the pericellular proteolytic microenvironment. It is now apparent that several proteases and protease inhibitors, most notably urokinase plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1), also interact with several cell surface receptors transducing intracellular signals that significantly affect both motile and proliferative programs. These events appear distinct from the original function of uPA/PAI-1 as modulators of the plasmin-based proteolytic cascade. The multifaceted interactions of PAI-1 with specific matrix components (i.e., vitronectin), the low-density lipoprotein receptor-related protein-1 (LRP1), and the uPA/uPA receptor complex have dramatic consequences on the migratory phenotype and may underlie the pathophysiologic sequalae of PAI-1 deficiency and overexpression. This paper focuses on the increasingly intricate role of PAI-1 as a major mechanistic determinant of the cellular migratory phenotype
Fermions, Gauge Theories, and the Sinc Function Representation for Feynman Diagrams
We extend our new approach for numeric evaluation of Feynman diagrams to
integrals that include fermionic and vector propagators. In this initial
discussion we begin by deriving the Sinc function representation for the
propagators of spin-1/2 and spin-1 fields and exploring their properties. We
show that the attributes of the spin-0 propagator which allowed us to derive
the Sinc function representation for scalar field Feynman integrals are shared
by fields with non-zero spin. We then investigate the application of the Sinc
function representation to simple QED diagrams, including first order
corrections to the propagators and the vertex.Comment: 10 pages, Latex, 9 figure
Distribution Pattern Variability of Granular VRT Applicators
Granular applicators equipped with variable-rate technology (VRT) have gained popularity in recent years as a result of increased interest in variable-rate application. The purpose of this investigation was to characterize distribution patterns at varying rates for different granular applicators. Uniform-rate (UR) tests were conducted to assess the accuracy of variable-rate application from four granular applicators: two spinner-disc spreaders (A and B), and two pneumatic applicators (C and D). Pattern results indicated a consistent triangular pattern for spinner spreader B and consistent patterns for the pneumatic applicators (C and D). However, applicator D produced pattern variations at the center and right side. Simulated overlap analysis generated CVs \u3c 20% for applicators B and C. Applicator A performed well at the two lower rates (CVs \u3c 19%) but not at the highest rate (CV = 27%). Pattern unevenness for applicator D produced CVs between 25% and 34%. The spinner-disc spreaders over-applied, while the pneumatic applicators under-applied at the margins, suggesting an adjustment to the effective swath spacing or spinner-disc speed is needed to improve application accuracy. Further, overlap plots indicated pattern variability even when acceptable CVs were attained for applicators B and C. Therefore, it is recommended that CVs accompany simulated overlap pattern plots to ensure proper calibration of VRT equipment. Swath spacing analysis indicated that three of the four applicator spacings could be changed from the recommended value to improve application uniformity. Pattern comparisons showed that pattern shifts occurred for applicator A (P = 0.0092) with increasing application rate but not for applicators B, C, and D. These results demonstrate potential application errors with VRT and the need for proper calibration to maintain acceptable performance. Further, this investigation demonstrates the need for a VRT equipment testing standard
Rate Response Assessment from Various Granular VRT Applicators
Variable-rate technology (VRT) adds complexity to application equipment, thereby confounding the assessment of applicator performance. The intent of this investigation was to assess the rate response of various VRT granular applicators: two spinner spreaders (A and B), and two pneumatic applicators (C and D). Variable-rate (VR) tests were conducted to quantify the rate response characteristics (delay and transition times) for the applicators. A sigmoidal function was used to model the rate response for five of the six tests. Applicator A exhibited a linear response during decreasing rate changes. Results indicated that only applicator B demonstrated consistent delay and transition times, enabling the use of a single “look-ahead” time for rate response time correction. Contouring of prescription maps increased the transition times for applicator D by enlarging the adjustment area between management zones. Rate changes were quicker for the two newer VR control systems, signifying advancement in hydraulic control valve technology. This research illustrates the need for standard testing protocols for VRT systems to help guide VRT software developers, equipment manufacturers, and end users
- …