632 research outputs found

    Scalar-Quark Systems and Chimera Hadrons in SU(3)_c Lattice QCD

    Get PDF
    Light scalar-quarks \phi (colored scalar particles or idealized diquarks) and their color-singlet hadronic states are studied with quenched SU(3)_c lattice QCD in terms of mass generation in strong interaction without chiral symmetry breaking. We investigate ``scalar-quark mesons'' \phi^\dagger \phi and ``scalar-quark baryons'' \phi\phi\phi which are the bound states of scalar-quarks \phi. We also investigate the bound states of scalar-quarks \phi and quarks \psi, i.e., \phi^\dagger \psi, \psi\psi\phi and \phi\phi\psi, which we name ``chimera hadrons''. All the new-type hadrons including \phi are found to have a large mass even for zero bare scalar-quark mass m_\phi=0 at a^{-1}\simeq 1GeV. We find that the constituent scalar-quark and quark picture is satisfied for all the new-type hadrons. Namely, the mass of the new-type hadron composed of m \phi's and n \psi's, M_{{m}\phi+{n}\psi}, satisfies M_{{m}\phi+{n}\psi}\simeq {m} M_\phi +{n} M_\psi, where M_\phi and M_\psi are the constituent scalar-quark and quark mass, respectively. M_\phi at m_\phi=0 estimated from these new-type hadrons is 1.5-1.6GeV, which is larger than that of light quarks, M_\psi\simeq 400{\rm MeV}. Therefore, in the systems of scalar-quark hadrons and chimera hadrons, scalar-quarks acquire large mass due to large quantum corrections by gluons. Together with other evidences of mass generations of glueballs and charmonia, we conjecture that all colored particles generally acquire a large effective mass due to dressed gluon effects.Comment: 9 pages, 9 figure

    Chiral phase transition at high temperature in the QCD-like gauge theory

    Get PDF
    The chiral phase transition at high temperature is investigated using the effect ive potential in the framework of the QCD-like gauge theory with a variational a pproach. We have a second order phase transition at Tc=136T_c=136MeV. We also investigate numerically the temperature dependence of condensate, fπf_\pi a nd a2(T)a_2(T)(coefficient of the quadratic term in the effective potential) and es timate the critical exponents of these quantities.Comment: 12 pages,7 figure

    Anomaly-Free Supersymmetric SO(2N+2)/U(N+1) sigma-Model Based on the SO(2N+1) Lie Algebra of the Fermion Operators

    Full text link
    The extended supersymmetric (SUSY) sigma-model has been proposed on the bases of SO(2N+1) Lie algebra spanned by fermion annihilation-creation operators and pair operators. The canonical transformation, extension of an SO(2N) Bogoliubov transformation to an SO(2N+1) group, is introduced. Embedding the SO(2N+1) group into an SO(2N+2) group and using SO(2N+2)/U(N+1) coset variables, we have investigated the SUSY sigma-model on the Kaehler manifold, the coset space SO(2N+2)/U(N+1). We have constructed the Killing potential, extension of the potential in the SO(2N)/U(N) coset space to that in the SO(2N+2)/U(N+1) coset space. It is equivalent to the generalized density matrix whose diagonal-block part is related to a reduced scalar potential with a Fayet-Ilipoulos term. The f-deformed reduced scalar potential is optimized with respect to vacuum expectation value of the sigma-model fields and a solution for one of the SO(2N+1) group parameters has been obtained. The solution, however, is only a small part of all solutions obtained from anomaly-free SUSY coset models. To construct the coset models consistently, we must embed a coset coordinate in an anomaly-free spinor representation (rep) of SO(2N+2) group and give corresponding Kaehler and Killing potentials for an anomaly-free SO(2N+2)/U(N+1) model based on each positive chiral spinor rep. Using such mathematical manipulation we construct successfully the anomaly-free SO(2N+2)/U(N+1) SUSY sigma-model and investigate new aspects which have never been seen in the SUSY sigma-model on the Kaehler coset space SO(2N)/U(N). We reach a f-deformed reduced scalar potential. It is minimized with respect to the vacuum expectation value of anomaly-free SUSY sigma-model fields. Thus we find an interesting f-deformed solution very different from the previous solution for an anomaly-free SO(2.5+2)/(SU(5+1)*U(1)) SUSY sigma-model.Comment: 24 pages, no fiure

    Universality, the QCD critical/tricritical point and the quark number susceptibility

    Get PDF
    The quark number susceptibility near the QCD critical end-point (CEP), the tricritical point (TCP) and the O(4) critical line at finite temperature and quark chemical potential is investigated. Based on the universality argument and numerical model calculations we propose a possibility that the hidden tricritical point strongly affects the critical phenomena around the critical end-point. We made a semi-quantitative study of the quark number susceptibility near CEP/TCP for several quark masses on the basis of the Cornwall-Jackiw-Tomboulis (CJT) potential for QCD in the improved-ladder approximation. The results show that the susceptibility is enhanced in a wide region around CEP inside which the critical exponent gradually changes from that of CEP to that of TCP, indicating a crossover of different universality classes.Comment: 18 pages, 10 figure

    Calculation of the Chiral Lagrangian Coefficients from the Underlying Theory of QCD: A Simple Approach

    Full text link
    We calculate the coefficients in the chiral Lagrangian approximately from QCD based on a previous study of deriving the chiral Lagrangian from the first principles of QCD in which the chiral Lagrangian coefficients are defined in terms of certain Green's functions in QCD. We first show that, in the large N(c)-limit, the anomaly part contributions to the coefficients are exactly cancelled by certain terms in the normal part contributions, and the final results of the coefficients only concern the remaining normal part contributions depending on QCD interactions. We then do the calculation in a simple approach with the approximations of taking the large-N(c) limit, the leading order in dynamical perturbation theory, and the improved ladder approximation, thereby the relevant Green's functions are expressed in terms of the quark self energy. By solving the Schwinger-Dyson equation for the quark self energy, we obtain the approximate QCD predicted coefficients and the quark condensate which are consistent with the experimental values.Comment: Further typos corrected, to appear in Phys. Rev.

    Current quark mass effects on chiral phase transition of QCD in the improved ladder approximation

    Get PDF
    Current quark mass effects on the chiral phase transition of QCD is studied in the improved ladder approximation. An infrared behavior of the gluon propagator is modified in terms of an effective running coupling. The analysis is based on a composite operator formalism and a variational approach. We use the Schwinger-Dyson equation to give a ``normalization condition'' for the Cornwall-Jackiw-Tomboulis effective potential and to isolate the ultraviolet divergence which appears in an expression for the quark-antiquark condensate. We study the current quark mass effects on the order parameter at zero temperature and density. We then calculate the effective potential at finite temperature and density and investigate the current quark mass effects on the chiral phase transition. We find a smooth crossover for T>0T>0, μ=0\mu=0 and a first-order phase transition for μ>0\mu>0, T=0. Critical exponents are also studied and our model gives the classical mean-field values. We also study the temperature dependence of masses of scalar and pseudoscalar bosons. A critical end point in the TT-μ\mu plane is found at T100T \sim 100 MeV, μ300\mu \sim 300 MeV.Comment: 19 pages, 13 figure
    corecore