124 research outputs found

    Studies of the decays D^0 \rightarrow K_S^0K^-\pi^+ and D^0 \rightarrow K_S^0K^+\pi^-

    Full text link
    The first measurements of the coherence factor R_{K_S^0K\pi} and the average strong--phase difference \delta^{K_S^0K\pi} in D^0 \to K_S^0 K^\mp\pi^\pm decays are reported. These parameters can be used to improve the determination of the unitary triangle angle \gamma\ in B^- \rightarrow D~Kβˆ’\widetilde{D}K^- decays, where D~\widetilde{D} is either a D^0 or a D^0-bar meson decaying to the same final state, and also in studies of charm mixing. The measurements of the coherence factor and strong-phase difference are made using quantum-correlated, fully-reconstructed D^0D^0-bar pairs produced in e^+e^- collisions at the \psi(3770) resonance. The measured values are R_{K_S^0K\pi} = 0.70 \pm 0.08 and \delta^{K_S^0K\pi} = (0.1 \pm 15.7)∘^\circ for an unrestricted kinematic region and R_{K*K} = 0.94 \pm 0.12 and \delta^{K*K} = (-16.6 \pm 18.4)∘^\circ for a region where the combined K_S^0 \pi^\pm invariant mass is within 100 MeV/c^2 of the K^{*}(892)^\pm mass. These results indicate a significant level of coherence in the decay. In addition, isobar models are presented for the two decays, which show the dominance of the K^*(892)^\pm resonance. The branching ratio {B}(D^0 \rightarrow K_S^0K^+\pi^-)/{B}(D^0 \rightarrow K_S^0K^-\pi^+) is determined to be 0.592 \pm 0.044 (stat.) \pm 0.018 (syst.), which is more precise than previous measurements.Comment: 38 pages. Version 3 updated to include the erratum information. Errors corrected in Eqs (25), (26), 28). Fit results updated accordingly, and external inputs updated to latest best known values. Typo corrected in Eq(3)- no other consequence

    Observation of the Dalitz Decay Dsβˆ—+β†’Ds+e+eβˆ’D_{s}^{*+} \to D_{s}^{+} e^{+} e^{-}

    Full text link
    Using 586 pbβˆ’1\textrm{pb}^{-1} of e+eβˆ’e^{+}e^{-} collision data acquired at s=4.170\sqrt{s}=4.170 GeV with the CLEO-c detector at the Cornell Electron Storage Ring, we report the first observation of Dsβˆ—+β†’Ds+e+eβˆ’D_{s}^{*+} \to D_{s}^{+} e^{+} e^{-} with a significance of 5.3Οƒ5.3 \sigma. The ratio of branching fractions \calB(D_{s}^{*+} \to D_{s}^{+} e^{+} e^{-}) / \calB(D_{s}^{*+} \to D_{s}^{+} \gamma) is measured to be [0.72βˆ’0.13+0.15(stat)Β±0.10(syst)][ 0.72^{+0.15}_{-0.13} (\textrm{stat}) \pm 0.10 (\textrm{syst})]%, which is consistent with theoretical expectations

    Updated Measurement of the Strong Phase in D0 --> K+pi- Decay Using Quantum Correlations in e+e- --> D0 D0bar at CLEO

    Full text link
    We analyze a sample of 3 million quantum-correlated D0 D0bar pairs from 818 pb^-1 of e+e- collision data collected with the CLEO-c detector at E_cm = 3.77 GeV, to give an updated measurement of \cos\delta and a first determination of \sin\delta, where \delta is the relative strong phase between doubly Cabibbo-suppressed D0 --> K+pi- and Cabibbo-favored D0bar --> K+pi- decay amplitudes. With no inputs from other experiments, we find \cos\delta = 0.81 +0.22+0.07 -0.18-0.05, \sin\delta = -0.01 +- 0.41 +- 0.04, and |\delta| = 10 +28+13 -53-0 degrees. By including external measurements of mixing parameters, we find alternative values of \cos\delta = 1.15 +0.19+0.00 -0.17-0.08, \sin\delta = 0.56 +0.32+0.21 -0.31-0.20, and \delta = (18 +11-17) degrees. Our results can be used to improve the world average uncertainty on the mixing parameter y by approximately 10%.Comment: Minor revisions, version accepted by PR

    Search for rare and forbidden decays of charm and charmed-strange mesons to final states h^+- e^-+ e^+

    Get PDF
    We have searched for flavor-changing neutral current decays and lepton-number-violating decays of D^+ and D^+_s mesons to final states of the form h^+- e^-+ e^+, where h is either \pi or K. We use the complete samples of CLEO-c open-charm data, corresponding to integrated luminosities of 818 pb^-1 at the center-of-mass energy E_CM = 3.774 GeV containing 2.4 x 10^6 D^+D^- pairs and 602 pb^-1 at E_CM = 4.170 GeV containing 0.6 x 10^6 D^*+-_s D^-+_s pairs. No signal is observed in any channel, and we obtain 90% confidence level upper limits on branching fractions B(D^+ --> \pi^+ e^+ e^-) < 5.9 x 10^-6, B(D^+ --> \pi^- e^+ e^+) K^+ e^+ e^-) < 3.0 x 10^-6, B(D^+ --> K^- e^+ e^+) \pi^+ e^+ e^-) < 2.2 x 10^-5, B(D^+_s --> \pi^- e^+ e^+) K^+ e^+ e^-) < 5.2 x 10^-5, and B(D^+_s --> K^- e^+ e^+) < 1.7 x 10^-5.Comment: 9 pages, available through http://www.lns.cornell.edu/public/CLNS

    Branching fractions for Y(3S) -> pi^0 h_b and psi(2S) -> pi^0 h_c

    Full text link
    Using e^+e^- collision data corresponding to 5.88M Y(3S) [25.9M psi(2S)] decays and acquired by the CLEO III [CLEO-c] detectors operating at CESR, we study the single-pion transitions from Y(3S) [psi(2S)] to the respective spin-singlet states h_{b[c]}. Utilizing only the momentum of suitably selected transition-pi^0 candidates, we obtain the upper limit B(Y(3S) -> pi^0 h_b) < 1.2\times 10^{-3} at 90% confidence level, and measure B(psi(2S) -> pi^0 h_c) = (9.0+-1.5+-1.3)\times 10^{-4}. Signal sensitivities are enhanced by excluding very asymmetric pi^0 -> gamma gamma candidates.Comment: 12 pages 4 figures, version published in Physical Review

    Dalitz Plot Analysis of Ds to K+K-pi+

    Full text link
    We perform a Dalitz plot analysis of the decay Ds to K+K-pi+ with the CLEO-c data set of 586/pb of e+e- collisions accumulated at sqrt(s) = 4.17 GeV. This corresponds to about 0.57 million D_s+D_s(*)- pairs from which we select 14400 candidates with a background of roughly 15%. In contrast to previous measurements we find good agreement with our data only by including an additional f_0(1370)pi+ contribution. We measure the magnitude, phase, and fit fraction of K*(892) K+, phi(1020)pi+, K0*(1430)K+, f_0(980)pi+, f_0(1710)pi+, and f_0(1370)pi+ contributions and limit the possible contributions of other KK and Kpi resonances that could appear in this decay.Comment: 21 Pages,available through http://www.lns.cornell.edu/public/CLNS/, submitted to PR

    Higher-order multipole amplitudes in charmonium radiative transitions

    Full text link
    Using 24 million Οˆβ€²β‰‘Οˆ(2S)\psi' \equiv \psi(2S) decays in CLEO-c, we have searched for higher multipole admixtures in electric-dipole-dominated radiative transitions in charmonia. We find good agreement between our data and theoretical predictions for magnetic quadrupole (M2) amplitudes in the transitions Οˆβ€²β†’Ξ³Ο‡c1,2\psi' \to \gamma \chi_{c1,2} and Ο‡c1,2β†’Ξ³J/ψ\chi_{c1,2} \to \gamma J/\psi, in striking contrast to some previous measurements. Let b2Jb_2^J and a2Ja_2^J denote the normalized M2 amplitudes in the respective aforementioned decays, where the superscript JJ refers to the angular momentum of the Ο‡cJ\chi_{cJ}. By performing unbinned maximum likelihood fits to full five-parameter angular distributions, we determine the ratios a2J=1/a2J=2=0.67βˆ’0.13+0.19a_2^{J=1}/a_2^{J=2} = 0.67^{+0.19}_{-0.13} and a2J=1/b2J=1=βˆ’2.27βˆ’0.99+0.57a_2^{J=1}/b_2^{J=1} = -2.27^{+0.57}_{-0.99}, where the theoretical predictions are independent of the charmed quark magnetic moment and are a2J=1/a2J=2=0.676Β±0.071a_2^{J=1}/a_2^{J=2} = 0.676 \pm 0.071 and a2J=1/b2J=1=βˆ’2.27Β±0.16a_2^{J=1}/b_2^{J=1} = -2.27 \pm 0.16.Comment: 32 pages, 7 figures, acceptance updat

    Charmonium decays to gamma pi0, gamma eta, and gamma eta'

    Full text link
    Using data acquired with the CLEO-c detector at the CESR e+e- collider, we measure branching fractions for J/psi, psi(2S), and psi(3770) decays to gamma pi0, gamma eta, and gamma eta'. Defining R_n = B[ psi(nS)-->gamma eta ]/B[ psi(nS)-->gamma eta' ], we obtain R_1 = (21.1 +- 0.9)% and, unexpectedly, an order of magnitude smaller limit, R_2 < 1.8% at 90% C.L. We also use J/psi-->gamma eta' events to determine branching fractions of improved precision for the five most copious eta' decay modes.Comment: 14 pages, available through http://www.lns.cornell.edu/public/CLNS/, published in Physical Review

    B Cell Depletion Reduces the Number of Autoreactive T Helper Cells and Prevents Glucose-6-Phosphate Isomerase-Induced Arthritis

    Get PDF
    The therapeutic benefit of B cell depletion in patients with rheumatoid arthritis has provided proof of concept that B cells are relevant for the pathogenesis of arthritis. It remains unknown which B cell effector functions contribute to the induction or chronification of arthritis. We studied the clinical and immunological effects of B cell depletion in glucose-6-phosphate isomerase-induced arthritis. We targeted CD22 to deplete B cells. Mice were depleted of B cells before or after immunization with glucose-6-phosphate isomerase (G6PI). The clinical and histological effects were studied. G6PI-specific antibody responses were measured by ELISA. G6PI-specific T helper (Th) cell responses were assayed by polychromatic flow cytometry. B cell depletion prior to G6PI-immunization prevented arthritis. B cell depletion after immunization ameliorated arthritis, whereas B cell depletion in arthritic mice was ineffective. Transfer of antibodies from arthritic mice into B cell depleted recipients did not reconstitute arthritis. B cell depleted mice harbored much fewer G6PI-specific Th cells than control animals. B cell depletion prevents but does not cure G6PI-induced arthritis. Arthritis prevention upon B cell depletion is associated with a drastic reduction in the number of G6PI-specific effector Th cells
    • …
    corecore