16 research outputs found

    Structure and dynamics of Oxide Melts and Glasses : a view from multinuclear and high temperature NMR

    Get PDF
    Solid State Nuclear Magnetic Resonance (NMR) experiments allow characterizing the local structure and dynamics of oxide glasses and melts. Thanks to the development of new experiments, it now becomes possible to evidence not only the details of the coordination state of the network formers of glasses but also to characterize the nature of polyatomic molecular motifs extending over several chemical bonds. We present results involving 31P homonuclear experiments that allow description of groups of up to three phosphate units and 27Al/17O heteronuclear that allows evidencing μ3 oxygen bridges in aluminate glasses and rediscussion of the structure of high temperature melts.Comment: Journal of Non-Crystalline Solids (2007) in press; Also available online at: http://crmht.cnrs-orleans.fr/Intranet/Publications/?id=207

    Apolipoprotein E mediates evasion from hepatitis C virus−neutralizing antibodies

    Get PDF
    Background & Aims Efforts to develop an effective vaccine against hepatitis C virus (HCV) have been hindered by the propensity of the virus to evade host immune responses. HCV particles in serum and in cell culture associate with lipoproteins, which contribute to viral entry. Lipoprotein association has also been proposed to mediate viral evasion of the humoral immune response, though the mechanisms are poorly defined. Methods We used small interfering RNAs to reduce levels of apolipoprotein E (apoE) in cell culture−derived HCV−producing Huh7.5-derived hepatoma cells and confirmed its depletion by immunoblot analyses of purified viral particles. Before infection of naïve hepatoma cells, we exposed cell culture−derived HCV strains of different genotypes, subtypes, and variants to serum and polyclonal and monoclonal antibodies isolated from patients with chronic HCV infection. We analyzed the interaction of apoE with viral envelope glycoprotein E2 and HCV virions by immunoprecipitation. Results Through loss-of-function studies on patient-derived HCV variants of several genotypes and subtypes, we found that the HCV particle apoE allows the virus to avoid neutralization by patient-derived antibodies. Functional studies with human monoclonal antiviral antibodies showed that conformational epitopes of envelope glycoprotein E2 domains B and C were exposed after depletion of apoE. The level and conformation of virion-associated apoE affected the ability of the virus to escape neutralization by antibodies. Conclusions In cell-infection studies, we found that HCV-associated apoE helps the virus avoid neutralization by antibodies against HCV isolated from chronically infected patients. This method of immune evasion poses a challenge for the development of HCV vaccines

    Hepatitis C virus infection protein network

    Get PDF
    A proteome-wide mapping of interactions between hepatitis C virus (HCV) and human proteins was performed to provide a comprehensive view of the cellular infection. A total of 314 protein–protein interactions between HCV and human proteins was identified by yeast two-hybrid and 170 by literature mining. Integration of this data set into a reconstructed human interactome showed that cellular proteins interacting with HCV are enriched in highly central and interconnected proteins. A global analysis on the basis of functional annotation highlighted the enrichment of cellular pathways targeted by HCV. A network of proteins associated with frequent clinical disorders of chronically infected patients was constructed by connecting the insulin, Jak/STAT and TGFÎČ pathways with cellular proteins targeted by HCV. CORE protein appeared as a major perturbator of this network. Focal adhesion was identified as a new function affected by HCV, mainly by NS3 and NS5A proteins
    corecore