17 research outputs found
Recommended from our members
Direct visualization of quasi-ordered oxygen chain structures on Au(110)-(1×2)
The Au(110) surface offers unique advantages for atomically-resolved model studies of catalytic oxidation processes on gold. We investigate the adsorption of oxygen on Au(110) using a combination of scanning tunneling microscopy (STM) and density functional theory (DFT) methods. We identify the typical (empty-states) STM contrast resulting from adsorbed oxygen as atomic-sized dark features of electronic origin. DFT-based image simulations confirm that chemisorbed oxygen is generally detected indirectly, from the binding-induced electronic structure modification of gold. STM images show that adsorption occurs without affecting the general structure of the pristine Au(110) missing-row reconstruction. The tendency to form one-dimensional structures is observed already at low coverage (< 0.05 ML), with oxygen adsorbing on alternate sides of the reconstruction ridges. Consistently, calculations yield preferred adsorption on the (111) facets of the reconstruction, on a 3-fold coordination site, with increased stability when adsorbed in chains. Gold atoms with two oxygen neighbors exhibit enhanced electronic hybridization with the O states. Finally, the species observed are reactive to CO oxidation at 200 K and desorption of CO2 leaves a clean and ordered gold surface.Engineering and Applied Science
Multiscale investigation of graphene layers on 6H-SiC(000-1)
In this article, a multiscale investigation of few graphene layers grown on 6H-SiC(000-1) under ultrahigh vacuum (UHV) conditions is presented. At 100-μm scale, the authors show that the UHV growth yields few layer graphene (FLG) with an average thickness given by Auger spectroscopy between 1 and 2 graphene planes. At the same scale, electron diffraction reveals a significant rotational disorder between the first graphene layer and the SiC surface, although well-defined preferred orientations exist. This is confirmed at the nanometer scale by scanning tunneling microscopy (STM). Finally, STM (at the nm scale) and Raman spectroscopy (at the μm scale) show that the FLG stacking is turbostratic, and that the domain size of the crystallites ranges from 10 to 100 nm. The most striking result is that the FLGs experience a strong compressive stress that is seldom observed for graphene grown on the C face of SiC substrates
Electronic and structural characterization of divacancies in irradiated graphene
We provide a thorough study of a carbon divacancy, a fundamental but almost
unexplored point defect in graphene. Low temperature scanning tunneling
microscopy (STM) imaging of irradiated graphene on different substrates enabled
us to identify a common two-fold symmetry point defect. Our first principles
calculations reveal that the structure of this type of defect accommodates two
adjacent missing atoms in a rearranged atomic network formed by two pentagons
and one octagon, with no dangling bonds. Scanning tunneling spectroscopy (STS)
measurements on divacancies generated in nearly ideal graphene show an
electronic spectrum dominated by an empty-states resonance, which is ascribed
to a spin-degenerated nearly flat band of -electron nature. While the
calculated electronic structure rules out the formation of a magnetic moment
around the divacancy, the generation of an electronic resonance near the Fermi
level, reveals divacancies as key point defects for tuning electron transport
properties in graphene systems.Comment: 5 page
Recommended from our members
Self-assembly of acetate adsorbates drives atomic rearrangement on the Au(110) surface
Weak inter-adsorbate interactions are shown to play a crucial role in determining surface structure, with major implications for its catalytic reactivity. This is exemplified here in the case of acetate bound to Au(110), where the small extra energy of the van der Waals interactions among the surface-bound groups drives massive restructuring of the underlying Au. Acetate is a key intermediate in electro-oxidation of CO2 and a poison in partial oxidation reactions. Metal atom migration originates at surface defects and is likely facilitated by weakened Au–Au interactions due to bonding with the acetate. Even though the acetate is a relatively small molecule, weak intermolecular interaction provides the energy required for molecular self-assembly and reorganization of the metal surface
Recommended from our members
Identifying key descriptors in surface binding: interplay of surface anchoring and intermolecular interactions for carboxylates on Au(110)† †Electronic supplementary information (ESI) available: Supporting experimental methods and supporting discussion are included in the supplementary information. See DOI: 10.1039/c7sc05313d
The relative stability of carboxylates on Au(110) was investigated as part of a comprehensive study of adsorbate binding on Group IB metals that can be used to predict and understand how to control reactivity in heterogeneous catalysis. The binding efficacy of carboxylates is only weakly dependent on alkyl chain length for relatively short-chain molecules, as demonstrated using quantitative temperature-programmed reaction spectroscopy. Corresponding density functional theory (DFT) calculations demonstrated that the bidentate anchoring geometry is rigid and restricts the amount of additional stabilization through adsorbate-surface van der Waals (vdW) interactions which control stability for alkoxides. A combination of scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) shows that carboxylates form dense local islands on Au(110). Complementary DFT calculations demonstrate that adsorbate–adsorbate interactions provide additional stabilization that increases as a function of alkyl chain length for C2 and C3 carboxylates. Hence, overall stability is generally a function of the anchoring group to the surface and the inter-adsorbate interaction. This study demonstrates the importance of these two important factors in describing binding of key catalytic intermediates
Etude de l'interface graphène - SiC(000-1) (face carbone) par microscopie à effet tunnel et simulations numériques ab initio
Graphene refers to a two-dimensional crystal made of carbon atoms arranged on a honeycomb lattice. This material presents interesting electronic properties regarding fundamental physics as well as industrial applications, such as an exotic low-energy band structure and high charge carrier mobility. Its fabrication through the graphitization of SiC is a promising method for electronics. We studied this system using scanning tunnelling microscopy (STM) and ab initio numerical simulations with the aim of characterizing the graphene - SiC(000-1) (carbon face) interface and studying the impact of the substrate on graphene's electronic structure. After an introduction to the graphene topic and a description of our investigation techniques, we present our lightly graphitized samples obtained under ultra-high vacuum. We identify two interface structures, the native SiC(000-1) surface reconstructions named (2x2)C and (3x3), on top of which lie graphene monolayer islands with a high rotational disorder leading to various moiré patterns on STM images. Using STM, we show that the graphene/(3x3) interaction is very weak. We then study the stronger graphene/(2x2) interaction successively from the point of view of the graphene and the reconstruction states, in the direct and reciprocal space, using both our experimental and theoretical methods. Finally, we consider the impact of interfacial defects observed by STM through graphene/(2x2) islands and modelled with hydrogen adatoms on the electronic band structure and doping of grapheneLe graphène est un cristal bidimensionnel composé d'atomes de carbone arrangés sur un réseau en nids d'abeille. Ce matériau présente des propriétés électroniques intéressantes tant au niveau fondamental qu'en vue d'applications avec notamment une structure de bande exotique en « cône de Dirac » et de grandes mobilités de porteurs. Sa fabrication par graphitisation du SiC est particulièrement adaptée aux applications électroniques. Nous avons étudié ce système par microscopie à effet tunnel (STM) et simulations numériques ab initio avec comme objectif la caractérisation au niveau atomique de l'interface graphène - SiC(000-1) (face carbone) et l'étude de l'impact du substrat sur la structure électronique du graphène. Après un chapitre introductif à la thématique du graphène, suivi d'un chapitre présentant les deux techniques utilisées au cours de ce travail, nous présentons nos échantillons faiblement graphitisés obtenus sous ultra-vide. Nous avons identifié deux types d'interfaces, les reconstructions natives de la surface du SiC(000-1) appelées (2x2)C et (3x3), sur lesquelles reposent les ilots monoplan de graphène, avec un fort désordre rotationnel donnant lieu à des figures de moiré sur les images STM. Nous montrons par imagerie STM et spectroscopie tunnel que l'interaction graphène/(3x3) est très faible. Nous étudions ensuite le cas d'interaction plus forte graphène/(2x2) successivement du point de vue des états du graphène et des états de la reconstruction, dans l'espace direct et réciproque, de façon expérimentale et théorique. Enfin, nous considérons l'effet de défauts observés par STM à l'interface des ilots sur (2x2), modélisés par des adatomes d'hydrogène, sur le dopage et la structure de bande électronique du graphène
Investigation of the graphene - SiC(000-1) (carbon face) interface using scanning tunneling microscopy and ab initio numerical simulations
Le graphène est un cristal bidimensionnel composé d'atomes de carbone arrangés sur un réseau en nids d'abeille. Ce matériau présente des propriétés électroniques intéressantes tant au niveau fondamental qu'en vue d'applications avec notamment une structure de bande exotique en « cône de Dirac » et de grandes mobilités de porteurs. Sa fabrication par graphitisation du SiC est particulièrement adaptée aux applications électroniques. Nous avons étudié ce système par microscopie à effet tunnel (STM) et simulations numériques ab initio avec comme objectif la caractérisation au niveau atomique de l'interface graphène - SiC(000-1) (face carbone) et l'étude de l'impact du substrat sur la structure électronique du graphène. Après un chapitre introductif à la thématique du graphène, suivi d'un chapitre présentant les deux techniques utilisées au cours de ce travail, nous présentons nos échantillons faiblement graphitisés obtenus sous ultra-vide. Nous avons identifié deux types d'interfaces, les reconstructions natives de la surface du SiC(000-1) appelées (2x2)C et (3x3), sur lesquelles reposent les ilots monoplan de graphène, avec un fort désordre rotationnel donnant lieu à des figures de moiré sur les images STM. Nous montrons par imagerie STM et spectroscopie tunnel que l'interaction graphène/(3x3) est très faible. Nous étudions ensuite le cas d'interaction plus forte graphène/(2x2) successivement du point de vue des états du graphène et des états de la reconstruction, dans l'espace direct et réciproque, de façon expérimentale et théorique. Enfin, nous considérons l'effet de défauts observés par STM à l'interface des ilots sur (2x2), modélisés par des adatomes d'hydrogène, sur le dopage et la structure de bande électronique du graphène.Graphene refers to a two-dimensional crystal made of carbon atoms arranged on a honeycomb lattice. This material presents interesting electronic properties regarding fundamental physics as well as industrial applications, such as an exotic low-energy band structure and high charge carrier mobility. Its fabrication through the graphitization of SiC is a promising method for electronics. We studied this system using scanning tunnelling microscopy (STM) and ab initio numerical simulations with the aim of characterizing the graphene - SiC(000-1) (carbon face) interface and studying the impact of the substrate on graphene's electronic structure. After an introduction to the graphene topic and a description of our investigation techniques, we present our lightly graphitized samples obtained under ultra-high vacuum. We identify two interface structures, the native SiC(000-1) surface reconstructions named (2x2)C and (3x3), on top of which lie graphene monolayer islands with a high rotational disorder leading to various moiré patterns on STM images. Using STM, we show that the graphene/(3x3) interaction is very weak. We then study the stronger graphene/(2x2) interaction successively from the point of view of the graphene and the reconstruction states, in the direct and reciprocal space, using both our experimental and theoretical methods. Finally, we consider the impact of interfacial defects observed by STM through graphene/(2x2) islands and modelled with hydrogen adatoms on the electronic band structure and doping of graphen
Etude de l'interface graphène - SiC(000-1) (face carbone) par microscopie à effet tunnel et simulations numériques ab initio
Le graphène est un cristal bidimensionnel composé d'atomes de carbone arrangés sur un réseau en nids d'abeille. Ce matériau présente des propriétés électroniques intéressantes tant au niveau fondamental qu'en vue d'applications avec notamment une structure de bande exotique en cône de Dirac et de grandes mobilités de porteurs. Sa fabrication par graphitisation du SiC est particulièrement adaptée aux applications électroniques. Nous avons étudié ce système par microscopie à effet tunnel (STM) et simulations numériques ab initio avec comme objectif la caractérisation au niveau atomique de l'interface graphène - SiC(000-1) (face carbone) et l'étude de l'impact du substrat sur la structure électronique du graphène. Après un chapitre introductif à la thématique du graphène, suivi d'un chapitre présentant les deux techniques utilisées au cours de ce travail, nous présentons nos échantillons faiblement graphitisés obtenus sous ultra-vide. Nous avons identifié deux types d'interfaces, les reconstructions natives de la surface du SiC(000-1) appelées (2x2)C et (3x3), sur lesquelles reposent les ilots monoplan de graphène, avec un fort désordre rotationnel donnant lieu à des figures de moiré sur les images STM. Nous montrons par imagerie STM et spectroscopie tunnel que l'interaction graphène/(3x3) est très faible. Nous étudions ensuite le cas d'interaction plus forte graphène/(2x2) successivement du point de vue des états du graphène et des états de la reconstruction, dans l'espace direct et réciproque, de façon expérimentale et théorique. Enfin, nous considérons l'effet de défauts observés par STM à l'interface des ilots sur (2x2), modélisés par des adatomes d'hydrogène, sur le dopage et la structure de bande électronique du graphène.Graphene refers to a two-dimensional crystal made of carbon atoms arranged on a honeycomb lattice. This material presents interesting electronic properties regarding fundamental physics as well as industrial applications, such as an exotic low-energy band structure and high charge carrier mobility. Its fabrication through the graphitization of SiC is a promising method for electronics. We studied this system using scanning tunnelling microscopy (STM) and ab initio numerical simulations with the aim of characterizing the graphene - SiC(000-1) (carbon face) interface and studying the impact of the substrate on graphene's electronic structure. After an introduction to the graphene topic and a description of our investigation techniques, we present our lightly graphitized samples obtained under ultra-high vacuum. We identify two interface structures, the native SiC(000-1) surface reconstructions named (2x2)C and (3x3), on top of which lie graphene monolayer islands with a high rotational disorder leading to various moiré patterns on STM images. Using STM, we show that the graphene/(3x3) interaction is very weak. We then study the stronger graphene/(2x2) interaction successively from the point of view of the graphene and the reconstruction states, in the direct and reciprocal space, using both our experimental and theoretical methods. Finally, we consider the impact of interfacial defects observed by STM through graphene/(2x2) islands and modelled with hydrogen adatoms on the electronic band structure and doping of grapheneSAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
Atomic and electronic structure of monolayer graphene on 6H-SiC(0001)(3 × 3) : a scanning tunneling microscopy study.
International audienceWe present an investigation of the atomic and electronic structure of graphene monolayer islands on the 6H-SiC(0001)(3×3) (SiC(3×3)) surface reconstruction using scanning tunneling microscopy (STM) and spectroscopy (STS). The orientation of the graphene lattice changes from one island to the other. In the STM images, this rotational disorder gives rise to various superlattices with periods in the nm range. We show that those superlattices are moir ́e patterns (MPs) and we correlate their apparent height with the stacking at the graphene/SiC(3×3) interface. The contrast of the MP in STM images corresponds to a small topographic modulation (by typically 0.2 ̊A) of the graphene layer. From STS measurements we find that the substrate surface presents a 1.5 eV wide bandgap encompassing the Fermi level. This substrate surface bandgap subsists below the graphene plane. The tunneling spectra are spatially homogeneous on the islands within the substrate surface gap, which shows that the MPs do not impact the low energy electronic structure of graphene. We conclude that the SiC(3 × 3) reconstruction efficiently passivates the substrate surface and that the properties of the graphene layer which grows on top of it should be similar to those of the ideal material
Structure and stability of the interface between graphene and 6H-SiC(000-1) (3x3) : an STM and ab-initio study
24 pagesInternational audienceWe examine in detail the structure and the evolution upon annealing of the SiC(3x3) reconstruction which is known to be present at the interface between the SiC-C face substrate and the graphene layer for samples prepared in high vacuum. We use ab-initio calculations to test the validity of proposed or classical structural models in comparison with scanning tunnelling microscopy (STM) images. We analyze the electronic structure of the bare surface and detect interface states which can pin the surface Fermi level. From a comparison of the signal coming from the bare and graphene covered SiC(3x3) reconstruction we propose that the transparency of the graphene in high bias STM images results from an enhancement of the local density of states of the interface plane by the graphene layer. We discuss the thermal stability of the SiC(3x3) surface, and show that it transforms more easily into the SiC(2x2)C reconstruction in the graphene covered region than for the bare surface. This evolution generates both structural and electronic heterogeneities at the interface