241 research outputs found
Neuropathic Bladder Caused by Caudal Regression Syndrome without Any Other Neurogenic Symptoms
Caudal regression syndrome (CRS) is a rare congenital vertebral anomaly, which occurs most often in combination with spinal cord malformations and morphologic dysfunctions of the lower extremities; these signs are useful for both patients and clinicians in the diagnosis of this syndrome. However, in certain cases, clinicians have failed to identify the syndrome due to the lack of apparent anomalies, resulting in the progression of renal dysfunction caused by neuropathic bladder when CRS is eventually identified. Here, we report a case of a 2-year-old girl who was referred to our hospital for vesicoureteral reflux. At examination, she presented no neurological symptoms; however, on cystourethrography and CT scanning we found that the sacral bone was absent, through which CRS was diagnosed. A urodynamic study indicated detrusor-sphincter dyssynergia, and clean intermittent catheterization was initiated. In the present report, we describe a case of CRS with no neurologic symptoms other than a neuropathic bladder. The lack of outward signs can result in delayed diagnosis. Thus, urological examinations, including a urodynamic study, might be the only clue for identifying an underlying neurologic injury involving the lower spinal cord
An accurate prediction of high-frequency circuit behaviour, Journal of Telecommunications and Information Technology, 2005, nr 1
An accurate way to predict the behaviour of an RF analogue circuit is presented. A lot of effort is required to eliminate the inaccuracies that may generate the deviation between simulation and measurement. Efficient use of computer-aided design and incorporation of as many physical effects as possible overcomes this problem. Improvement of transistor modelling is essential, but there are many other un-solved problems affecting the accuracy of RF analogue circuit modelling. In this paper, the way of selection of accurate transistor model and the extraction of parasitic elements from the physical layout, as well as implementation to the circuit simulation will be presented using two CMOS circuit examples: an amplifier and a voltage controlled oscillator (VCO). New simulation technique, electro-magnetic (EM)-co-simulation is introduced
Probing neutrino masses and tri-bimaximality with lepton flavor violation searches
We examine relation between neutrino oscillation parameters and prediction of
lepton flavor violation, in light of deviations from tri-bimaximal mixing. Our
study shows that upcoming experimental searches for lepton flavor violation
process can provide useful implications for neutrino mass spectrum and mixing
angles. With simple structure of heavy right-handed neutrino and supersymmetry
breaking sectors, the discovery of tau \to mu gamma decay determines neutrino
mass hierarchy if large (order 0.1) reactor angle is established.Comment: 17 pages, references and clarifications added, typos correcte
Brachytherapy in Japan
This study aimed to assess the current state of brachytherapy (BT) resources, practices and resident education in Japan. A nationwide survey was undertaken encompassing 177 establishments facilitating BT in 2022. Questionnaires were disseminated to each BT center, and feedback through online channels or postal correspondence was obtained. The questionnaire response rate was 90% (159/177), and every prefecture had a response in at least one center. The number of centers in each prefecture ranged from 0.6 to 3.6 (median: 1.3) per million population. The annual number of patients in each center ranged from 0 to 272 (median: 31). While most prefectures provided intracavitary (IC) BT for gynecological cancers and interstitial (IS) BT for prostate cancer, only one-third of the prefectures provided IS BT for cancer sites other than the prostate. The institutional image-guided BT implementation rate was 71%. IC and IS BT was performed for 15.4% of IC BT cases of gynecological cancer. Only 47% of the BT training centers answered that they could provide adequate training in BT for residents. The most common reason for this finding was the insufficient number of patients in each center. The results show that, although BT has achieved uniformity in terms of facility penetration, new technologies are not yet widespread enough. Furthermore, IS BT, which requires advanced skills, is limited to a few BT centers, and considerable number of BT training centers do not have sufficient caseloads to provide the necessary experience for their residents
Role of cyclooxygenase-2-mediated prostaglandin E2-prostaglandin E receptor 4 signaling in cardiac reprogramming
Direct cardiac reprogramming from fibroblasts can be a promising approach for disease modeling, drug screening, and cardiac regeneration in pediatric and adult patients. However, postnatal and adult fibroblasts are less efficient for reprogramming compared with embryonic fibroblasts, and barriers to cardiac reprogramming associated with aging remain undetermined. In this study, we screened 8400 chemical compounds and found that diclofenac sodium (diclofenac), a non-steroidal anti-inflammatory drug, greatly enhanced cardiac reprogramming in combination with Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2. Intriguingly, diclofenac promoted cardiac reprogramming in mouse postnatal and adult tail-tip fibroblasts (TTFs), but not in mouse embryonic fibroblasts (MEFs). Mechanistically, diclofenac enhanced cardiac reprogramming by inhibiting cyclooxygenase-2, prostaglandin E2/prostaglandin E receptor 4, cyclic AMP/protein kinase A, and interleukin 1β signaling and by silencing inflammatory and fibroblast programs, which were activated in postnatal and adult TTFs. Thus, anti-inflammation represents a new target for cardiac reprogramming associated with aging
Characterization of the sequence specificity of the R1Bm endonuclease domain by structural and biochemical studies
R1Bm is a long interspersed element (LINE) inserted into a specific sequence within 28S rDNA of the silkworm genome. Of two open reading frames (ORFs) of R1Bm, ORF2 encodes a reverse transcriptase (RT) and an endonuclease (EN) domain which digests specifically both top and bottom strand of the target sequence in 28S rDNA. To elucidate the sequence specificity of EN domain of R1Bm (R1Bm EN), we examined the cleavage tendency for the target sequences, and found that 5′-A(G/C)(A/T)!(A/G)T-3′ is the consensus sequence (! = cleavage site). We also determined the crystal structure of R1Bm EN at 2.0 Å resolution. Its structure was basically similar to AP endonuclease family, but had a special β-hairpin at the edge of the DNA binding surface, which is a common feature among EN of LINEs. Point-mutations on the DNA binding surface of R1Bm EN significantly decreased the cleavage activities, but did not affect the sequence recognition in most residues. However, two mutants Y98A and N180A had altered cleavage patterns, suggesting an important role of these residues (Y98 and N180) for the sequence recognition of R1Bm EN. In addition, Y98A mutant showed another cleavage pattern, that implies de novo design of novel sequence-specific EN
The Japanese space gravitational wave antenna; DECIGO
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future
Japanese space gravitational wave antenna. DECIGO is expected to open a new window of
observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing
various mysteries of the universe such as dark energy, formation mechanism of supermassive
black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of
three drag-free spacecraft, whose relative displacements are measured by a differential Fabry–
Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre-
DECIGO first and finally DECIGO in 2024
DECIGO pathfinder
DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article
- …