98 research outputs found

    Molecular Aspects of Eye Evolution and Development: From the Origin of Retinal Cells to the Future of Regenerative Medicine

    Get PDF
    A central issue of evolutionary developmental biology is how the eye is diverged morphologically and functionally. However, the unifying mechanisms or schemes that govern eye diversification remain unsolved. In this review, I first introduce the concept of evolutionary developmental biology of the eye with a focus on photoreception, the fundamental property of retinal cells. Second, I summarize the early development of vertebrate eyes and the role of a homeobox gene, Lhx1, in subdivision of the retina into 2 domains, the neural retina and retinal pigmented epithelium of the optic primordium. The 2 retinal domains are essential components of the eye as they are found in such prototypic eyes as the extant planarian eye. Finally, I propose the presence of novel retinal cell subtypes with photosensory functions based on our recent work on atypical photopigments (opsins) in vertebrates. Since human diseases are attributable to the aberration of various types of cells due to alterations in gene expression, understanding the precise mechanisms of cellular diversification and unraveling the molecular profiles of cellular subtypes are essential to future regenerative medicine

    Roles for a tissue morphogenetic factor, Fgf10

    Get PDF

    Mammalian type opsin 5 preferentially activates G14 in Gq-type G proteins triggering intracellular calcium response

    Get PDF
    Mammalian type opsin 5 (Opn5m), a UV-sensitive G protein-coupled receptor opsin highly conserved in vertebrates, would provide a common basis for UV sensing from lamprey to humans. However, G protein coupled with Opn5m remains controversial due to variations in assay conditions and the origin of Opn5m across different reports. Here, we examined Opn5m from diverse species using an aequorin luminescence assay and G alpha-KO cell line. Beyond the commonly studied major G alpha classes, G alpha q, G alpha 11, G alpha 14, and G alpha 15 in the Gq class were individually investigated in this study, as they can drive distinct signaling pathways in addition to a canonical calcium response. UV light triggered a calcium response via all the tested Opn5m proteins in 293T cells, which was abolished by Gq-type G alpha deletion and rescued by cotransfection with mouse and medaka Gq-type G alpha proteins. Opn5m preferentially activated G alpha 14 and close relatives. Mutational analysis implicated specific regions, including alpha 3-beta 5 and alpha G-alpha 4 loops, alpha G and alpha 4 helices, and the extreme C terminus, in the preferential activation of G alpha 14 by Opn5m. FISH revealed co-expression of genes encoding Opn5m and G alpha 14 in the scleral cartilage of medaka and chicken eyes, supporting their physiological coupling. This suggests that the preferential activation of G alpha 14 by Opn5m is relevant for UV sensing in specific cell types

    The Opsin 3/Teleost multiple tissue opsin system: mRNA localization in the retina and brain of medaka (Oryzias latipes)

    Get PDF
    The photoreceptor protein, opsin, is one of the major components for vision and photoreceptive function in animals. Although many opsins have been discovered from animal genomes, only a few nonimage‐forming functions mediated by opsins have been identified. Understanding the mRNA distribution of photoreceptor proteins is one crucial step in uncovering their photoreceptive function in animals. Here, we focus on the medaka fish (Oryzias latipes) Opsin 3 (Opn3)/Teleost multiple opsin (Tmt) system, which constitutes a separate phylogenetic group, having putative blue light photoreceptors for nonimage‐forming functions. In medaka, there is one opn3 and five tmt‐opsin orthologs. The expression pattern of the opn3/tmt‐opsins in the retina and brain was investigated by in situ hybridization. mRNAs for opn3/tmt‐opsins were distributed in the retinal ganglion cells as well as interneurons and specific brain nuclei. Specifically, hybridization signals were observed in the glutamate decarboxylase 1 (gad1)‐expressing amacrine cells for opn3, tmt1a, tmt1b, and tmt2, in the caudal lobe of the cerebellum for tmt1b and tmt2, in the cranial nerve nuclei for opn3, tmt1a, tmt1b, tmt2, and in the rostral pars distalis (adenohypophysis) for opn3. These expression patterns suggest that blue light sensing in the fish retina and brain may be involved in the integration of visual inputs, vestibular function, somatosensation, motor outputs, and pituitary endocrine regulation

    The medaka mutant deficient in eyes shut homolog exhibits opsin transport defects and enhanced autophagy in retinal photoreceptors

    Get PDF
    Eyes shut homolog (EYS) encodes a proteoglycan and the human mutation causes retinitis pigmentosa type 25 (RP25) with progressive retinal degeneration. RP25 most frequently affects autosomal recessive RP patients with many ethnic backgrounds. Although studies using RP models have facilitated the development of therapeutic medications, Eys has been lost in rodent model animals. Here we examined the roles for Eys in the maintenance of photoreceptor structure and function by generating eys-null medaka fish using the CRISPR-Cas9 system. Medaka EYS protein was present near the connecting cilium of wild-type photoreceptors, while it was absent from the eys−/− retina. The mutant larvae exhibited a reduced visual motor response compared with wild-type. In contrast to reported eys-deficient zebrafish at the similar stage, no retinal cell death was detected in the 8-month post-hatching (8-mph) medaka eys mutant. Immunohistochemistry showed a significant reduction in the length of cone outer segments (OSs), retention of OS proteins in the inner segments of photoreceptors, and abnormal filamentous actin network at the base of cone OSs in the mutant retina by 8 mph. Electron microscopy revealed aberrant structure of calyceal processes, numerous vesiculation and lamellar interruptions, and autophagosomes in the eys-mutant cone photoreceptors. In situ hybridization showed an autophagy component gene, gabarap, was ectopically expressed in the eys-null retina. These results suggest eys is required for regeneration of OS, especially of cone photoreceptors, and transport of OS proteins by regulating actin filaments. Enhanced autophagy may delay the progression of retinal degeneration when lacking EYS in the medaka retina

    Diversification processes of teleost intron-less opsin genes

    Get PDF
    Opsins are universal photosensitive proteins in animals. Vertebrates have a variety of opsin genes for visual and non-visual photoreceptions. Analysis of the gene structures shows that most opsin genes have introns in their coding regions. However, teleosts exceptionally have several intron-less opsin genes which are presumed to have been duplicated by an RNA-based gene duplication mechanism, retroduplication. Among these retrogenes, we focused on the Opn4 (melanopsin) gene responsible for non-image-forming photoreception. Many teleosts have five Opn4 genes including one intron-less gene, which is speculated to have been formed from a parental intron-containing gene in the Actinopterygii. In this study, to reveal the evolutionary history of Opn4 genes, we analyzed them in teleost (zebrafish and medaka) and non-teleost (bichir, sturgeon and gar) fishes. Our synteny analysis suggests that the intron-less Opn4 gene emerged by retroduplication after branching of the bichir lineage. In addition, our biochemical and histochemical analyses showed that, in the teleost lineage, the newly acquired intron-less Opn4 gene became abundantly used without substantial changes of the molecular properties of the Opn4 protein. This stepwise evolutionary model of Opn4 genes is quite similar to that of rhodopsin genes in the Actinopterygii. The unique acquisition of rhodopsin and Opn4 retrogenes would have contributed to the diversification of the opsin gene repertoires in the Actinopterygii and the adaptation of teleosts to various aquatic environments

    Role of BMP signaling in leg regeneration

    Get PDF
    The cricket, Gryllus bimaculatus, is a classic model of leg regeneration following amputation. We previously demonstrated that Gryllus decapentaplegic (Gb’dpp) is expressed during leg regeneration, although it remains unclear whether it is essential for this process. In this study, double-stranded RNA targeting the Smad mathers-against-dpp homolog, Gb’mad, was employed to examine the role of Bone morphogenetic protein (BMP) signaling in the leg regeneration process of Gryllus bimaculatus. RNA interference (RNAi)-mediated knockdown of Gb’mad led to a loss of tarsus regeneration at the most distal region of regenerating leg segments. Moreover, we confirmed that the phenotype obtained by knockdown of Dpp type I receptor, Thick veins (Gb’tkv), closely resembled that observed for Gb’mad RNAi crickets, thereby suggesting that the BMP signaling pathway is indispensable for the initial stages of tarsus formation. Interestingly, knockdown of Gb’mad and Gb’tkv resulted in significant elongation of regenerating tibia along the proximodistal axis compared with normal legs. Moreover, our findings indicate that during the regeneration of tibia, the BMP signaling pathway interacts with Dachsous/Fat (Gb’Ds/Gb’Ft) signaling and dachshund (Gb’dac) to re-establish positional information and regulate determination of leg size. Based on these observations, we discuss possible roles for Gb’mad in the distal patterning and intercalation processes during leg regeneration in Gryllus bimaculatus

    Enhancer of zeste plays an important role in photoperiodic modulation of locomotor rhythm in the cricket, Gryllus bimaculatus

    Get PDF
    Introduction: Insects show daily behavioral rhythms controlled by an endogenous oscillator, the circadian clock. The rhythm synchronizes to daily light–dark cycles (LD) and changes waveform in association with seasonal change in photoperiod. Results: To explore the molecular basis of the photoperiod-dependent changes in circadian locomotor rhythm, we investigated the role of a chromatin modifier, Enhancer of zeste (Gb’E(z)), in the cricket, Gryllus bimaculatus. Under a 12 h:12 h LD (LD 12:12), Gb’E(z) was constitutively expressed in the optic lobe, the site of the biological clock; active phase (α) and rest phase (ρ) were approximately 12 h in duration, and α/ρ ratio was approximately 1.0. When transferred to LD 20:4, the α/ρ ratio decreased significantly, and the Gb’E(z) expression level was significantly reduced at 6 h and 10 h after light-on, as was reflected in the reduced level of trimethylation of histone H3 lysine 27. This change was associated with change in clock gene expression profiles. The photoperiod-dependent changes in α/ρ ratio and clock gene expression profiles were prevented by knocking down Gb’E(z) by RNAi. Conclusions: These results suggest that histone modification by Gb’E(z) is involved in photoperiodic modulation of the G. bimaculatus circadian rhythm

    FGF7 and FGF10 Directly Induce the Apical Ectodermal Ridge in Chick Embryos

    Get PDF
    AbstractDuring vertebrate limb development, the apical ectodermal ridge (AER) plays a vital role in both limb initiation and distal outgrowth of the limb bud. In the early chick embryo the prelimb bud mesoderm induces the AER in the overlying ectoderm. However, the direct inducer of the AER remains unknown. Here we report that FGF7 and FGF10, members of the fibroblast growth factor family, are the best candidates for the direct inducer of the AER. FGF7 induces an ectopic AER in the flank ectoderm of the chick embryo in a different manner from FGF1, -2, and -4 and activates the expression of Fgf8, an AER marker gene, in a cultured flank ectoderm without the mesoderm. Remarkably, FGF7 and FGF10 applied in the back induced an ectopic AER in the dorsal median ectoderm. Our results suggest that FGF7 and FGF10 directly induce the AER in the ectoderm both of the flank and of the dorsal midline and that these two regions have the competence for AER induction. Formation of the AER of the dorsal median ectoderm in the chick embryo is likely to appear as a vestige of the dorsal fin of the ancestors

    Dkk3/REIC, an N-glycosylated Protein, Is a Physiological Endoplasmic Reticulum Stress Inducer in the Mouse Adrenal Gland

    Get PDF
    Dickkopf 3 (Dkk3) is a secreted protein belonging to the Dkk family and encoded by the orthologous gene of REIC. Dkk3/REIC is expressed by mouse and human adrenal glands, but the understanding of its roles in this organ is still limited. To determine the functions of Dkk3 in the mouse adrenal gland, we first identified that the mouse Dkk3 protein is N-glycosylated in the adrenal gland as well as in the brain. We performed proteome analysis on adrenal glands from Dkk3-null mice, in which exons 5 and 6 of the Dkk3 gene are deleted. Twodimensional polyacrylamide gel electrophoresis of adrenal proteins from wild-type and Dkk3-null mice revealed 5 protein spots whose intensities were altered between the 2 genotypes. Mass spectrometry analysis of these spots identified binding immunoglobulin protein (BiP), an endoplasmic reticulum (ER) chaperone. To determine whether mouse Dkk3 is involved in the unfolded protein response (UPR), we carried out a reporter assay using ER-stress responsive elements. Forced expression of Dkk3 resulted in the induction of distinct levels of reporter expression, showing the UPR initiated by the ER membrane proteins of activating transcription factor 6 (ATF6) and inositol-requring enzyme 1 (IRE1). Thus, it is possible that Dkk3 is a physiological ER stressor in the mouse adrenal gland
    corecore