7 research outputs found

    LAKE GUSINOE TO BAIKAL VIA SELENGA DELTA: PROTECTION-DESTRUCTION SPIRAL

    Get PDF
    Lake Gusinoe is the largest water body in the Buryat Republic (South Siberia, Russia) and still the only source of both drinking and industrial water supply. All the wastewater is thrown away into the same lake. Most of the tributaries, concentrated on the western lakeshore, disappear into the coarse deposits of alluvial fans soon after they emerge from the mountains. Anthropogenic impacts on the lake ecosystem increased during the 20th century. The biggest environmental polluters are the Gusinoozersk coal mine, the Kholboldzhinsky opencut coal mine, and the Gusinoozersk State Regional Power Plant (Gusinoozersk SRPP). The Gusinoozersk SRPP takes a large amount of freshwater from the Zagustai River, the longest influent of Lake Gusinoe, to produce hot water and steam for the turbines. The warm wastewater is discharged back into the lake. As a result of this, an unfrozen patch of water measuring about 2 km2 is formed on the lake in winter, and the water temperature in the upper layer is 13–14°C higher than the lower ones. Some chemical components (e.g., sulfate, phenol, iron ions) of both the lake water and surface/groundwater of the Lake Gusinoe Basin are with constant excess of the maximum allowable concentration (MAC). The Gusinoozersk SRPP is also the main air polluter. Now Lake Gusinoe is constantly polluted and in the state of degradation. Lake Gusinoe might be possible one of the largest pollution sources in the Baikal region, because the connecting transboundary Selenga River is the main inflow of Lake Baika

    Fundamental physics activities with pulsed neutron at J-PARC(BL05)

    Full text link
    "Neutron Optics and Physics (NOP/ BL05)" at MLF in J-PARC is a beamline for studies of fundamental physics. The beamline is divided into three branches so that different experiments can be performed in parallel. These beam branches are being used to develop a variety of new projects. We are developing an experimental project to measure the neutron lifetime with total uncertainty of 1 s (0.1%). The neutron lifetime is an important parameter in elementary particle and astrophysics. Thus far, the neutron lifetime has been measured by several groups; however, different values are obtained from different measurement methods. This experiment is using a method with different sources of systematic uncertainty than measurements conducted to date. We are also developing a source of pulsed ultra-cold neutrons (UCNs) produced from a Doppler shifter are available at the unpolarized beam branch. We are developing a time focusing device for UCNs, a so called "rebuncher", which can increase UCN density from a pulsed UCN source. At the low divergence beam branch, an experiment to search an unknown intermediate force with nanometer range is performed by measuring the angular dependence of neutron scattering by noble gases. Finally the beamline is also used for the research and development of optical elements and detectors. For example, a position sensitive neutron detector that uses emulsion to achieve sub-micrometer resolution is currently under development. We have succeeded in detecting cold and ultra-cold neutrons using the emulsion detector.Comment: 9 pages, 5 figures, Proceedings of International Conference on Neutron Optics (NOP2017

    MASTER AND PUPIL – DR. JÁN BRTEK AND I

    No full text
    Large branchiopod studies were born and bred in the Danube basin in some Eastern European countries (the former Czechoslovakia, Hungary, and Romania). The leading expert was the late Dr. Ján Brtek in Slovakia. Large branchiopods are usually habitants of such temporary lakes and ponds as inland bodies of fresh, mineralized, salt water or hypersaline. This article has two distinct goals: (1) to review the history of large branchiopod studies and (2) to draw attention to some of the scientific interest and value of ephemeral aquatic habitats, introducing my reminiscences of Dr. Brtek
    corecore