24 research outputs found

    Nucleation of the Primary Al Phase on TiAl 3 during Solidification in Hot-Dip Zn-11%Al-3%Mg-0.2%Si-Coated Steel Sheet * 1

    Get PDF
    The solidification structure of a hot-dip Zn-11%Al-3%Mg-0.2%Si coated steel sheet with a slight Ti addition was investigated by EBSD. In every center of the primary Al phase of the alloy-coating layer, TiAl 3 was observed by a scanning electron microscope, which suggests that TiAl 3 acts as a heterogeneous nucleation site of the primary Al phase. The latter was revealed to have perfect lattice coherency with the nucleus TiAl 3 phase. The crystal orientation relationships between TiAl 3 and the primary Al are ð001Þ TiAl3 == ð001Þ Al and ½100 TiAl3 == ½100 Al , ð100Þ TiAl3 == ð001Þ Al and ½001 TiAl3 == ½100 Al , ð102Þ TiAl3 == ð110Þ Al and ½ 2 201 TiAl3 == ½ 1 110 Al , ð110Þ TiAl3 == ð110Þ Al and ½ 1 110 TiAl3 == ½ 1 110 Al , indicating that the primary Al phase grows in an epitaxial manner from the nucleus TiAl 3 phase. The planar disregistry between the two phases was calculated to be less than 5%, owing to this good lattice coherency. The TiAl 3 phase is considered to decrease the degree of undercooling necessary for the nucleation of the primary Al phase

    Development of the photomultiplier tube readout system for the first Large-Sized Telescope of the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) is the next generation ground-based very high energy gamma-ray observatory. The Large-Sized Telescope (LST) of CTA targets 20 GeV -- 1 TeV gamma rays and has 1855 photomultiplier tubes (PMTs) installed in the focal plane camera. With the 23 m mirror dish, the night sky background (NSB) rate amounts to several hundreds MHz per pixel. In order to record clean images of gamma-ray showers with minimal NSB contamination, a fast sampling of the signal waveform is required so that the signal integration time can be as short as the Cherenkov light flash duration (a few ns). We have developed a readout board which samples waveforms of seven PMTs per board at a GHz rate. Since a GHz FADC has a high power consumption, leading to large heat dissipation, we adopted the analog memory ASIC "DRS4". The sampler has 1024 capacitors per channel and can sample the waveform at a GHz rate. Four channels of a chip are cascaded to obtain deeper sampling depth with 4096 capacitors. After a trigger is generated in a mezzanine on the board, the waveform stored in the capacitor array is subsequently digitized with a low speed (33 MHz) ADC and transferred via the FPGA-based Gigabit Ethernet to a data acquisition system. Both a low power consumption (2.64 W per channel) and high speed sampling with a bandwidth of >>300 MHz have been achieved. In addition, in order to increase the dynamic range of the readout we adopted a two gain system achieving from 0.2 up to 2000 photoelectrons in total. We finalized the board design for the first LST and proceeded to mass production. Performance of produced boards are being checked with a series of quality control (QC) tests. We report the readout board specifications and QC results.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Direct Recovery of the Rare Earth Elements Using a Silk Displaying a Metal-Recognizing Peptide

    No full text
    Rare earth elements (RE) are indispensable metallic resources in the production of advanced materials; hence, a cost- and energy-effective recovery process is required to meet the rapidly increasing RE demand. Here, we propose an artificial RE recovery approach that uses a functional silk displaying a RE-recognizing peptide. Using the piggyBac system, we constructed a transgenic silkworm in which one or two copies of the gene coding for the RE-recognizing peptide (Lamp1) was fused with that of the fibroin L (FibL) protein. The purified FibL-Lamp1 fusion protein from the transgenic silkworm was able to recognize dysprosium (Dy3+), a RE, under physiological conditions. This method can also be used with silk from which sericin has been removed. Furthermore, the Dy-recovery ability of this silk was significantly improved by crushing the silk. Our simple approach is expected to facilitate the direct recovery of RE from an actual mixed solution of metal ions, such as seawater and industrial wastewater, under mild conditions without additional energy input

    Non-invasive magnetic resonance imaging in rats for prediction of the fate of grafted kidneys from cardiac death donors.

    Get PDF
    The main objective of this study was to assess cardiac death (CD) kidney grafts before transplantation to determine whether blood oxygen level-dependent (BOLD) and diffusion MRI techniques can predict damage to these grafts after transplantation. We assessed CD kidney tissue by BOLD and diffusion MRI. We also examined pathological and gene expression changes in CD kidney grafts before and after transplantation. Although there was significantly more red cell congestion (RCC) in the inner stripe of the outer medulla (IS) in both 1 h after cardiac death (CD1h) and CD2h kidneys destined for grafts before transplantation compared with CD0h (p<0.05), CD2h, but not CD1h, kidney grafts had significantly different RCC in the IS 2 days after transplantation (p<0.05). Consistent with these pathological findings, tissue plasminogen activator (tPA) gene expression was increased only in the cortex and medulla of CD2h kidney grafts after transplantation. BOLD MRI successfully and non-invasively imaged and quantified RCC in the IS in both CD1h and CD2h kidney grafts (p<0.05). Diffusion MRI also non-invasively assessed increased the apparent diffusion coefficient in the IS and decreased it in the outer stripe (OS) of CD2h grafts, in concordance with interstitial edema in the IS and tubule cellular edema in the OS. These two types of edema in the outer medulla could explain the prolonged RCC in the IS only of CD2h kidney grafts, creating part of a vicious cycle inhibiting red cells coming out of capillary vessels in the IS. Perfusion with University of Wisconsin solution before MRI measurements did not diminish the difference in tissue damage between CD1h and CD2h kidney grafts. BOLD and diffusion MRI, which are readily available non-invasive tools for evaluating CD kidney grafts tissue damage, can predict prolonged organ damage, and therefore the outcome, of transplanted CD kidney grafts
    corecore