1,345 research outputs found

    Y-type Flux-Tube Formation and Gluonic Excitations in Baryons: From QCD to Quark Model

    Full text link
    Using SU(3) lattice QCD, we perform the first systematic study for the ground-state three-quark (3Q) potential V3Qg.s.V_{\rm 3Q}^{\rm g.s.} and the 1st excited-state 3Q potential V3Qe.s.V_{\rm 3Q}^{\rm e.s.}, {\it i.e.}, the energies of the ground state and the 1st excited state of the gluon field in the presence of the static three quarks. From the accurate and thorough calculation for more than 300 different patterns of 3Q systems, the static ground-state 3Q potential V3Qg.s.V_{\rm 3Q}^{\rm g.s.} is found to be well described by the Coulomb plus Y-type linear potential, {\it i.e.}, Y-Ansatz, within 1%-level deviation. As a clear evidence for Y-Ansatz, Y-type flux-tube formation is actually observed on the lattice in maximally-Abelian projected QCD. For more than 100 patterns of 3Q systems, we calculate the 1st excited-state 3Q potential V3Qe.s.V_{\rm 3Q}^{\rm e.s.} in quenched lattice QCD, and find the gluonic excitation energy ΔE3QV3Qe.s.V3Qg.s.\Delta E_{\rm 3Q} \equiv V_{\rm 3Q}^{\rm e.s.}-V_{\rm 3Q}^{\rm g.s.} to be about 1 GeV. This large gluonic-excitation energy is conjectured to ensure the success of the quark model for the low-lying hadrons even without gluonic excitations.Comment: Talk given at International Conference on Color Confinement and Hadrons in Quantum Chromodynamics - Confinement 2003, RIKEN, Japan, 21-24 Jul 200

    Meson-Meson and Meson-Baryon Interactions in Lattice QCD

    Full text link
    We study the meson-meson and meson-baryon interactions in lattice QCD. The simulation is performed on 20^3 * 24 lattice at \beta=5.7 using Wilson gauge action and Wilson fermion at the quenched level. By adopting one static quark for each hadron as "heavy-light meson" and "heavy-light-light baryon", we define the distance rr of two hadrons and extract the inter-hadron potential from the energy difference of the two-particle state and its asymptotic state. We find that both of the meson-meson and meson-baryon potentials are nontrivially weak for the whole range of 0.2 fm <= r <= 0.8 fm. The effect of including/excluding the quark-exchange diagrams is found to be marginal.Comment: Talk given at Particles and Nuclei International Conference (PANIC05), Santa Fe, NM, USA, 24-28 Oct. 2005. 3 pages, 2 figure

    Self Maps of Suspension of Sphere Bundles over Spheres

    Get PDF

    Falling Snow Melting Characteristics of Warm Water Flowing along Sheet Channels Spread on a Roof

    Get PDF
    The experiment for investigating the falling snow melting characteristics of warm water flowing along sheet channels spread on a roof was performed in Tookamachi city, Nigata prefecture from February 6 to February 7, 1995. The sheet surface temperatures at 11 positions in 3 channels were measured. A physical model for a gas-water-snow system was constructed to compare the predicted results with the measured ones. A fully spread uniform water film in the sheet channel was observed in the experiments. The experimental results elucidated that it was feasible to use warm water flowing along sheet channels for melting falling snow on roofs. The temperature drop in the sheet channel mainly depended on the snowfall intensity, atmospheric temperature and wind speed. Under the influence of the roof edge, the temperature drop in the channel next to the side edge was much larger than that in middle channels. A water-snow two phase flow or a snow covered frozen water was experienced temporarily in the lower reaches of the water flowing channel. These suggest that a larger water flow rate is needed for the channel next to the roof edge, and a higher inlet temperature or a greater water flow rate is required for a severe weather condition. There was reasonably good agreement between the measured and predicted water temperatures

    Multi-Quarks and Two-Baryon Interaction in Lattice QCD

    Full text link
    We study multi-quark (3Q,4Q,5Q) systems in lattice QCD. We perform the detailed studies of multi-quark potentials in lattice QCD to clarify the inter-quark interaction in multi-quark systems. We find that all the multi-quark potentials are well described by the OGE Coulomb plus multi-Y-type linear potential, i.e., the multi-Y Ansatz. For multi-quark systems, we observe lattice QCD evidences of ``flip-flop'', i.e., flux-tube recombination. These lattice QCD studies give an important bridge between elementary particle physics and nuclear physics.Comment: A talk given at Particles and Nuclei International Conference(PANIC05), Santa Fe, NM, Oct. 24-28, 2005. 3 pages, 6 figure
    corecore