137 research outputs found

    Increased Systemic Glucose Tolerance with Increased Muscle Glucose Uptake in Transgenic Mice Overexpressing RXRγ in Skeletal Muscle

    Get PDF
    BACKGROUND: Retinoid X receptor (RXR) γ is a nuclear receptor-type transcription factor expressed mostly in skeletal muscle, and regulated by nutritional conditions. Previously, we established transgenic mice overexpressing RXRγ in skeletal muscle (RXRγ mice), which showed lower blood glucose than the control mice. Here we investigated their glucose metabolism. METHODOLOGY/PRINCIPAL FINDINGS: RXRγ mice were subjected to glucose and insulin tolerance tests, and glucose transporter expression levels, hyperinsulinemic-euglycemic clamp and glucose uptake were analyzed. Microarray and bioinformatics analyses were done. The glucose tolerance test revealed higher glucose disposal in RXRγ mice than in control mice, but insulin tolerance test revealed no difference in the insulin-induced hypoglycemic response. In the hyperinsulinemic-euglycemic clamp study, the basal glucose disposal rate was higher in RXRγ mice than in control mice, indicating an insulin-independent increase in glucose uptake. There was no difference in the rate of glucose infusion needed to maintain euglycemia (glucose infusion rate) between the RXRγ and control mice, which is consistent with the result of the insulin tolerance test. Skeletal muscle from RXRγ mice showed increased Glut1 expression, with increased glucose uptake, in an insulin-independent manner. Moreover, we performed in vivo luciferase reporter analysis using Glut1 promoter (Glut1-Luc). Combination of RXRγ and PPARδ resulted in an increase in Glut1-Luc activity in skeletal muscle in vivo. Microarray data showed that RXRγ overexpression increased a diverse set of genes, including glucose metabolism genes, whose promoter contained putative PPAR-binding motifs. CONCLUSIONS/SIGNIFICANCE: Systemic glucose metabolism was increased in transgenic mice overexpressing RXRγ. The enhanced glucose tolerance in RXRγ mice may be mediated at least in part by increased Glut1 in skeletal muscle. These results show the importance of skeletal muscle gene regulation in systemic glucose metabolism. Increasing RXRγ expression may be a novel therapeutic strategy against type 2 diabetes

    Iron-heme-Bach1 axis is involved in erythroblast adaptation to iron deficiency

    Get PDF
    Iron plays the central role in oxygen transport by erythrocytes as a constituent of heme and hemoglobin. The importance of iron and heme is also to be found in their regulatory roles during erythroblast maturation. The transcription factor Bach1 may be involved in their regulatory roles since it is deactivated by direct binding of heme. To address whether Bach1 is involved in the responses of erythroblasts to iron status, low iron conditions that induced severe iron deficiency in mice were established. Under iron deficiency, extensive gene expression changes and mitophagy disorder were induced during maturation of erythroblasts. Bach1−/− mice showed more severe iron deficiency anemia in the developmental phase of mice and a retarded recovery once iron was replenished when compared with wild-type mice. In the absence of Bach1, the expression of globin genes and Hmox1 (encoding heme oxygenase-1) was de-repressed in erythroblasts under iron deficiency, suggesting that Bach1 represses these genes in erythroblasts under iron deficiency to balance the levels of heme and globin. Moreover, an increase in genome-wide DNA methylation was observed in erythroblasts of Bach1−/− mice under iron deficiency. These findings reveal the principle role of iron as a regulator of gene expression in erythroblast maturation and suggest that the iron-heme-Bach1 axis is important for a proper adaptation of erythroblast to iron deficiency to avoid toxic aggregates of non-heme globin

    Functional teeth and independence

    Get PDF
    Aim: To examine the relationship between the number of present and functional teeth at baseline and future incidence of loss of independence. Methods: Participants were community-dwelling older individuals who participated in a comprehensive geriatric health examination conducted in Kusatsu town, Japan, between 2009 and 2015. The primary endpoint was the incidence of loss of independence among participants, defined as the first certification of long-term care insurance in Japan. The numbers of present and functional teeth at baseline were determined via an oral examination. Demographics, clinical variables (e.g., history of chronic diseases and psychosocial factors), blood nutritional markers, physical functions, and perceived masticatory function were assessed. Results: This study included 1121 individuals, and 205 individuals suffered from loss of independence during the follow-up period. Kaplan–Meier estimates of loss of independence for participants with smaller numbers of present and functional teeth were significantly greater than for those with larger numbers of teeth. Cox proportional hazard analyses indicated that a smaller number of present teeth was not a significant risk factor after adjusting for demographic characteristics. However, the number of functional teeth was a significant risk factor after the adjustment (hazard ratio: 1.975 [1.168–3.340]). Additionally, higher hazard ratios were observed in other adjusted models, but they were not statistically significant. Conclusions: The number of functional teeth may be more closely related to the future incidence of loss of independence than the number of present teeth. This novel finding suggests that prosthodontic rehabilitation for tooth loss possibly prevents the future incidence of this life-event

    Functional tooth number and mortality

    Get PDF
    Aim: Previous studies on the association between intraoral conditions and mortality in community-dwelling older individuals reported that fewer present teeth (PT) are significant risk factors for mortality. However, how the number of PT relative to the number of functional teeth (FT), including both present and rehabilitated teeth, influences mortality has not been investigated fully. This study examined the impact of the number of FT on mortality among community-dwelling Japanese older adults. Methods: This study was a retrospective, observational and population-based follow-up study, which examined 1188 older individuals who participated in an annual geriatric health examination from 2009 to 2015. The average follow-up period was 1697.0 ± 774.5 days. The primary outcome was all-cause mortality at follow-up. The numbers of PT and FT of each participant were counted during an oral examination. In addition, demographics, clinical variables, blood nutrient markers, physical functions and perceived masticatory function were measured. Results: Kaplan–Meier analysis, followed by a log-rank test, revealed that fewer PT (P < 0.001) and FT (P = 0.002) were significantly associated with a reduced survival rate. Cox's proportional hazard analysis indicated that the number of FT, but not the number of PT, was a significant independent mortality risk factor after adjusting for demographics, clinical variables, nutrient markers and physical functioning (P = 0.036, hazard ratio: 2.089). Conclusions: Current results suggest that the number of FT more strongly predicts all-cause mortality than the number of PT among community-dwelling older adults. Further studies are necessary to consider the confounding of socioeconomic status and disability status

    Number of functional teeth more strongly predicts all‐cause mortality than number of present teeth in Japanese older adults

    Get PDF
    Aim Previous studies on the association between intraoral conditions and mortality in community‐dwelling older individuals reported that fewer present teeth (PT) are significant risk factors for mortality. However, how the number of PT relative to the number of functional teeth (FT), including both present and rehabilitated teeth, influences mortality has not been investigated fully. This study examined the impact of the number of FT on mortality among community‐dwelling Japanese older adults. Methods This study was a retrospective, observational and population‐based follow‐up study, which examined 1188 older individuals who participated in an annual geriatric health examination from 2009 to 2015. The average follow‐up period was 1697.0 ± 774.5 days. The primary outcome was all‐cause mortality at follow‐up. The numbers of PT and FT of each participant were counted during an oral examination. In addition, demographics, clinical variables, blood nutrient markers, physical functions and perceived masticatory function were measured. Results Kaplan–Meier analysis, followed by a log‐rank test, revealed that fewer PT (P  Conclusions Current results suggest that the number of FT more strongly predicts all‐cause mortality than the number of PT among community‐dwelling older adults. Further studies are necessary to consider the confounding of socioeconomic status and disability status

    Impact of number of functional teeth on independence of Japanese older adults

    Get PDF
    Aim To examine the relationship between the number of present and functional teeth at baseline and future incidence of loss of independence. Methods Participants were community-dwelling older individuals who participated in a comprehensive geriatric health examination conducted in Kusatsu town, Japan, between 2009 and 2015. The primary endpoint was the incidence of loss of independence among participants, defined as the first certification of long-term care insurance in Japan. The numbers of present and functional teeth at baseline were determined via an oral examination. Demographics, clinical variables (e.g., history of chronic diseases and psychosocial factors), blood nutritional markers, physical functions, and perceived masticatory function were assessed. Results This study included 1121 individuals, and 205 individuals suffered from loss of independence during the follow-up period. Kaplan–Meier estimates of loss of independence for participants with smaller numbers of present and functional teeth were significantly greater than for those with larger numbers of teeth. Cox proportional hazard analyses indicated that a smaller number of present teeth was not a significant risk factor after adjusting for demographic characteristics. However, the number of functional teeth was a significant risk factor after the adjustment (hazard ratio: 1.975 [1.168–3.340]). Additionally, higher hazard ratios were observed in other adjusted models, but they were not statistically significant. Conclusions The number of functional teeth may be more closely related to the future incidence of loss of independence than the number of present teeth. This novel finding suggests that prosthodontic rehabilitation for tooth loss possibly prevents the future incidence of this life-event
    corecore