25 research outputs found

    Systemic amyloidosis with amyloid goiter: An autopsy report

    Get PDF
    Systemic amyloidosis is a rare but potentially lethal disease characterized by amyloid accumulation in all organs. Amyloid goiter is an extremely rare pathological lesion characterized by thyroid gland enlargement with fat deposition due to local or systemic amyloidosis. A 60 s woman with rheumatoid arthritis was found unconscious on her bed and declared dead after failed cardiopulmonary resuscitation. Postmortem computed tomography showed severe enlargement of the heart and thyroid glands, suggestive of cardiac hypertrophy and thyroidism. Histological examination revealed amorphous eosinophilic deposits with parenchymal cell destruction in all organs, including the heart and thyroid gland. Abnormal amorphous deposits in the tissues were positive for amyloid A as noted upon Congo red immunohistochemical staining and birefringence microscopy, confirming systemic amyloidosis with amyloid goiter. Serum biochemical analysis revealed increased levels of C-reactive protein; anti-cyclic citrullinated peptide antibody; creatinine kinase-myoglobin binding and N-terminal pro-brain natriuretic peptide; and thyroglobulin, free triiodothyronine, and free thyroxine, indicating systemic inflammation, active rheumatoid arthritis, heart failure, and destructive hyperthyroidism, respectively. These findings suggested that the cause of death was undiagnosed heart failure due to secondary systemic amyloid A (AA) amyloidosis related to rheumatoid arthritis. In addition, destructive hyperthyroidism caused by systemic AA amyloidosis may have also been one of the causes of death as indicated by cardiac overload. To the best of our knowledge, this is the first forensic autopsy report of cardiac amyloidosis with amyloid goiter. In conclusion, this autopsy report highlights the importance of increased awareness and early intervention for severe but treatable complications of systemic amyloidosis

    Mitochondrial fission in hepatocytes as a potential therapeutic target for nonalcoholic steatohepatitis

    Get PDF
    [Aim] The mitochondria are highly plastic and dynamic organelles; mitochondrial dysfunction has been reported to play causative roles in diabetes, cardiovascular diseases, and nonalcoholic fatty liver disease (NAFLD). However, the relationship between mitochondrial fission and NAFLD pathogenesis remains unknown. We aimed to investigate whether alterations in mitochondrial fission could play a role in the progression of NAFLD. [Methods] Mice were fed a standard diet or choline-deficient, L-amino acid-defined (CDAA) diet with vehicle or mitochondrial division inhibitor-1. [Results] Substantial enhancement of mitochondrial fission in hepatocytes was triggered by 4 weeks of feeding and was associated with changes reflecting the early stage of human nonalcoholic steatohepatitis (NASH), steatotic change with liver inflammation, and hepatocyte ballooning. Excessive mitochondrial fission inhibition in hepatocytes and lipid metabolism dysregulation in adipose tissue attenuated liver inflammation and fibrogenesis but not steatosis and the systemic pathological changes in the early and chronic fibrotic NASH stages (4- and 12-week CDAA feeding). These beneficial changes due to the suppression of mitochondrial fission against the liver and systemic injuries were associated with decreased autophagic responses and endoplasmic reticulum stress in hepatocytes. Injuries to other liver cells, such as endothelial cells, Kupffer cells, and hepatic stellate cells, were also attenuated by the inhibition of mitochondrial fission in hepatocytes. [Conclusions] Taken together, these findings suggest that excessive mitochondrial fission in hepatocytes could play a causative role in NAFLD progression by liver inflammation and fibrogenesis through altered cell cross-talk. This study provides a potential therapeutic target for NAFLD

    A proof-of-concept study to construct Bayesian network decision models for supporting the categorization of sudden unexpected infant death

    Get PDF
    Sudden infant death syndrome (SIDS) remains a leading cause of infant death in high-income countries. Supporting models for categorization of sudden unexpected infant death into SIDS/non-SIDS could reduce mortality. Therefore, we aimed to develop such a tool utilizing forensic data, but the reduced number of SIDS cases renders this task inherently difficult. To overcome this, we constructed Bayesian network models according to diagnoses performed by expert pathologists and created conditional probability tables in a proof-of-concept study. In the diagnostic support model, the data of 64 sudden unexpected infant death cases was employed as the training dataset, and 16 known-risk factors, including age at death and co-sleeping, were added. In the validation study, which included 8 new cases, the models reproduced experts' diagnoses in 4 or 5 of the 6 SIDS cases. Next, to confirm the effectiveness of this approach for onset prediction, the data from 41 SIDS cases was employed. The model predicted that the risk of SIDS in 0- to 2-month-old infants exposed to passive smoking and co-sleeping is eightfold higher than that in the general infant population, which is comparable with previously published findings. The Bayesian approach could be a promising tool for constructing SIDS prevention models

    Genetic Study in Left Ventricular Noncompaction

    Get PDF
    Background—Left ventricular noncompaction (LVNC) has since been classified as a primary genetic cardiomyopathy, but the genetic basis is not fully evaluated. The aim of the present study was to identify the genetic spectrum using next-generation sequencing and to evaluate genotype–phenotype correlations in LVNC patients. Methods and Results—Using next-generation sequencing, we targeted and sequenced 73 genes related to cardiomyopathy in 102 unrelated LVNC patients. We identified 43 pathogenic variants in 16 genes in 39 patients (38%); 28 were novel variants. Sarcomere gene variants accounted for 63%, and variants in genes associated with channelopathies accounted for 12%. MYH7 and TAZ pathogenic variants were the most common, and rare variant collapsing analysis showed variants in these genes contributed to the risk of LVNC, although patients carrying MYH7 and TAZ pathogenic variants displayed different phenotypes. Patients with pathogenic variants had early age of onset and more severely decreased left ventricular ejection fractions. Survival analysis showed poorer prognosis in patients with pathogenic variants, especially those with multiple variants: All died before their first birthdays. Adverse events were noted in 17 patients, including 13 deaths, 3 heart transplants, and 1 implantable cardioverter-defibrillator insertion. Congestive heart failure at diagnosis and pathogenic variants were independent risk factors for these adverse events. Conclusions—Next-generation sequencing revealed a wide spectrum of genetic variations and a high incidence of pathogenic variants in LVNC patients. These pathogenic variants were independent risk factors for adverse events. Patients harboring pathogenic variants showed poor prognosis and should be followed closely

    About “safety and efficacy of hydroxyethyl starch”

    No full text

    The New Role of Plasma Substitute on Anti-inflammatory Effect and Viscosity

    No full text

    Problems of Using Low Molecular Dextran in Post-operative Management of Subarachnoid Hemorrhage

    No full text

    In Response

    No full text

    Fatal Dieulafoy lesion with IgG4-related disease: An autopsy case report

    Get PDF
    Dieulafoy lesions are rare vascular malformations of the gastrointestinal tract; however, they can lead to fatal vascular bleeding. Immunoglobulin G4-related disease (IgG4-RD) is a rare systemic fibroinflammatory disease involving multiple organs, including the vasculature. To date, no autopsy reports of Dieulafoy lesions with IgG4-RD have been described in the literature. A 48-year-old man was found dead in his home with hematochezia. Postmortem computed tomography revealed high-density gastric contents and an enlarged iso-density area in the pancreas, indicating gastric hemorrhage and mass-forming lesions. Macroscopic and histological examinations revealed an ulcer of the body of the stomach with a large amount of hemorrhage from the enlarged artery in the submucosal layer, confirming the rupture of the Dieulafoy lesion. Moreover, lymphocyte infiltrations with increased IgG4 positive cells were found in the pancreas, thyroid gland, and arteries in non-ulcer regions of the stomach, suggesting IgG4-RD. Serum biochemical analysis showed elevated levels of inflammatory mediators, such as IgE, soluble-interleukin-2 receptor, and C-reactive protein. These findings suggest that systemic inflammation caused by IgG4-RD could, at least in part, contribute to the development of Dieulafoy lesions and fatal rupture of the lesion. This case report highlights the importance of autopsy research focusing on Dieulafoy lesions and IgG4-RD to promote awareness and a better understanding of the relationships between these treatable diseases to establish earlier and effective interventional strategies for better patient outcomes
    corecore