12 research outputs found
Reconstruction and Regulation of the Central Catabolic Pathway in the Thermophilic Propionate-Oxidizing Syntroph Pelotomaculum thermopropionicum
Obligate anaerobic bacteria fermenting volatile fatty acids in syntrophic association with methanogenic archaea share the intermediate bottleneck step in organic-matter decomposition. These organisms (called syntrophs) are biologically significant in terms of their growth at the thermodynamic limit and are considered to be the ideal model to address bioenergetic concepts. We conducted genomic and proteomic analyses of the thermophilic propionate-oxidizing syntroph Pelotomaculum thermopropionicum to obtain the genetic basis for its central catabolic pathway. Draft sequencing and subsequent targeted gap closing identified all genes necessary for reconstructing its propionate-oxidizing pathway (i.e., methylmalonyl coenzyme A pathway). Characteristics of this pathway include the following. (i) The initial two steps are linked to later steps via transferases. (ii) Each of the last three steps can be catalyzed by two different types of enzymes. It was also revealed that many genes for the propionate-oxidizing pathway, except for those for propionate coenzyme A transferase and succinate dehydrogenase, were present in an operon-like cluster and accompanied by multiple promoter sequences and a putative gene for a transcriptional regulator. Proteomic analysis showed that enzymes in this pathway were up-regulated when grown on propionate; of these enzymes, regulation of fumarase was the most stringent. We discuss this tendency of expression regulation based on the genetic organization of the open reading frame cluster. Results suggest that fumarase is the central metabolic switch controlling the metabolic flow and energy conservation in this syntroph
Giant Cell Arteritis which Developed after the Administration of Granulocyte-colony Stimulating Factor for Cyclic Neutropenia
A 78-year-old woman diagnosed with cyclic neutropenia 5 years previously had been treated with recombinant granulocyte-colony stimulating factor (G-CSF). She developed fever, tenderness and distension of temporal arteries after the treatment with G-CSF. Magnetic resonance imaging and ultrasonography revealed wall thickening of the temporal arteries. She was therefore diagnosed with giant cell arteritis (GCA). Small vessel vasculitis has been reported as a complication of G-CSF. However, the development of large vessel vasculitis after G-CSF treatment is quite rare. To our knowledge, the present case is the first report of GCA suspected to be associated with coexisting cyclic neutropenia and G-CSF treatment