9 research outputs found

    Hangekobokuto (Banxia-houpo-tang), a Kampo Medicine that Treats Functional Dyspepsia

    Get PDF
    Although abdominal bloating is one of the most bothersome symptoms experienced by patients with functional dyspepsia (FD), therapeutic drugs to relieve abdominal bloating have not been established. We investigated the Kampo (Chinese herbal) medicine, Hangekobokuto (Banxia-houpo-tang, HKT) for patients with FD from the standpoint of bowel gas retention. The bowel gas volume calculated from a plain abdominal radiogram (gas volume score, GVS) in FD patients was significantly higher than that in healthy subjects. Two week administration of HKT in the FD patients showed a significant decrease of GVS. Furthermore, gastrointestinal symptoms, especially symptoms of abdominal pain, indigestion and constipation, all of which are closely related to abdominal bloating, improved significantly in FD patients after the administration of HKT. These results suggest that HKT improves abdominal bloating accompanied by the reduction of bowel gas in FD patients

    The Vasopressin Loading for Refractory septic shock (VALOR) study: a prospective observational study

    No full text
    Abstract Background Vasopressin is a second-line vasoactive agent for refractory septic shock. Vasopressin loading is not generally performed because of the lack of evidence for its effects and safety. However, based on our previous findings, we hypothesized it can predict the responsibility to vasopressin infusion with safety, and prospectively examined it in the present study. Methods Vasopressin loading was performed via the intravenous administration of a bolus of 1 U, followed by its continuous infusion at 1U/h in patients with septic shock treated with ≥ 0.2 μg/kg/min noradrenaline. An arterial pressure wave analysis was conducted, and endocrinological tests were performed immediately prior to vasopressin loading. We classified patients into responders/non-responders based on mean arterial pressure (MAP) changes after vasopressin loading. Based on our previous findings, the lower tertile of MAP changes was selected as the cut-off. The change in the catecholamine index (CAI) after 6 h was assigned as the primary outcome. Digital ischemia, mesenteric ischemia, and myocardial ischemia during the admission period were prospectively and systematically recorded as adverse events. Results Ninety-two patients were registered during the study period and examined. Sixty-two patients with a MAP change > 22 mmHg were assigned as responders and the others as non-responders. Blood adrenocorticotropic hormone levels were significantly higher in non-responders. Stroke volume variations were higher in responders before loading, while stroke volume and dP/dtmax were higher in responders after loading. Median CAI changes were − 10 in responders and 0 in non-responders, which was significantly lower in the former (p < 0.0001). AUROC of MAP change with vasopressin loading to predict CAI change < 0 after continuous infusion was 0.843 with sensitivity of 0.92 and specificity of 0.77. Ischemia events were observed in 5 cases (5.4%). Conclusions Vasopressin loading may be safely introduced for septic shock. Vasopressin loading may be used to predict responses to its continuous infusion and select appropriate strategies to increase blood pressure
    corecore