246 research outputs found

    Raman stimulated neutrino pair emission

    Get PDF
    A new scheme using macroscopic coherence is proposed to experimentally determine the neutrino mass matrix, in particular the absolute value of neutrino masses, and the mass type, Majorana or Dirac. The proposed process is a collective, coherent Raman scattering followed by neutrino-pair emission from | e of a long lifetime to | g ;.0 + | e .. + i j.i. j + | g with.i. j consisting of six massive neutrino-pairs. Calculated angular distribution has six (i j) thresholds which showup as steps at different angles. Angular locations of thresholds and event rates of the angular distribution make it possible to experimentally determine the smallest neutrino mass to the level of less than several meV, (accordingly all threemasses using neutrino oscillation data), the mass ordering pattern, normal or inverted, and to distinguish whether neutrinos are ofMajorana or Dirac type. Event rates of neutrino-pair emission, when the mechanism of macroscopic coherence amplification works, may become large enough for realistic experiments by carefully selecting certain types of target. The problem to be overcome is macro-coherently amplified quantum electrodynamic background of the process,.0 + | e .. +.2 +.3 + | g , when two extra photons,.2,.3, escape detection. We illustrate our idea using neutral Xe and trivalent Ho ion doped in dielectric crystals

    Periodic super-radiance in Er:YSO crystal

    Full text link
    We observed periodic optical pulses from an Er:YSO crystal during irradiating with an continuous-wave excitation laser. We refer to this new phenomenon as "periodic super-radiance". This periodicity can be understood qualitatively by a simple model, in which a cyclic process of a continuous supply of population inversion and a sudden burst of super-radiance is repeated. The excitation power dependences of peak interval and the pulse area can be interpreted with our simple model. In addition, the linewidth of super-radiance is much narrower than an inhomogeneous broadening in a crystal. This result suggests that only Er3+ ions in a specific environment are involved in super-radiance.Comment: 7 pages, 5 figure

    Glycosylation reactions mediated by hypervalent iodine : application to the synthesis of nucleosides and carbohydrates

    Get PDF
    To synthesize nucleoside and oligosaccharide derivatives, we often use a glycosylation reaction to form a glycoside bond. Coupling reactions between a nucleobase and a sugar donor in the former case, and the reaction between an acceptor and a sugar donor of in the latter are carried out in the presence of an appropriate activator. As an activator of the glycosylation, a combination of a Lewis acid catalyst and a hypervalent iodine was developed for synthesizing 4’-thionucleosides, which could be applied for the synthesis of 4’-selenonucleosides as well. The extension of hypervalent iodine-mediated glycosylation allowed us to couple a nucleobase with cyclic allylsilanes and glycal derivatives to yield carbocyclic nucleosides and 2’,3’-unsaturated nucleosides, respectively. In addition, the combination of hypervalent iodine and Lewis acid could be used for the glycosylation of glycals and thioglycosides to produce disaccharides. In this paper, we review the use of hypervalent iodine-mediated glycosylation reactions for the synthesis of nucleosides and oligosaccharide derivatives
    • …
    corecore