1,708 research outputs found

    Orbital Decay and Tidal Disruption of a Star Cluster: Analytical Calculation

    Get PDF
    The orbital decay and tidal disruption of a star cluster in a galaxy is studied in an analytical manner. Owing to dynamical friction, the star cluster spirals in toward the center of the galaxy. Simultaneously, the galactic tidal field strips stars from the outskirts of the star cluster. Under an assumption that the star cluster undergoes a self-similar evolution, we obtain the condition and timescale for the star cluster to reach the galaxy center before its disruption. The result is used to discuss the fate of so-called intermediate-mass black holes with >10^3 M(sun) found recently in young star clusters of starburst galaxies and also the mass function of globular clusters in galaxies.Comment: 12 pages, 1 PS file for 2 figures, to appear in The Astrophysical Journa

    Runaway Merging of Black Holes: Analytical Constraint on the Timescale

    Get PDF
    Following the discovery of a black hole (BH) with a mass of 10^3-10^6 M(sun) in a starburst galaxy M82, we study formation of such a BH via successive merging of stellar-mass BHs within a star cluster. The merging has a runaway characteristic. This is because massive BHs sink into the cluster core and have a high number density, and because the merging probability is higher for more massive BHs. We use the Smoluchowski equation to study analytically the evolution of the BH mass distribution. Under favorable conditions, which are expected for some star clusters in starburst galaxies, the timescale of the runaway merging is at most of order 10^7 yr. This is short enough to account for the presence of a BH heavier than 10^3 M(sun) in an ongoing starburst region.Comment: 10 pages, no figures, to appear in The Astrophysical Journal (Letters

    Mass Segregation in Star Clusters: Analytic Estimation of the Timescale

    Get PDF
    Mass segregation in a star cluster is studied in an analytical manner. We consider a two-component cluster, which consists of two types of stars with different masses. Plummer's model is used for the initial condition. We trace the overall behaviors of the probability distribution functions of the two components and obtain the timescale of mass segregation as a simple function of the cluster parameters. The result is used to discuss the origin of a black hole with mass of > 1000 M(sun) found in the starburst galaxy M82.Comment: 12 pages, 1 ps file for 2 figures, to appear in The Astrophysical Journa

    Thermodynamics of four-dimensional black objects in the warped compactification

    Full text link
    We reinvestigate the thermodynamics of black objects (holes and strings) in four-dimensional braneworld models that are originally constructed by Emparan, Horowitz and Myers based on the anti-de Sitter (AdS) C-metric. After proving the uniqueness of slicing the AdS C-metric, we derive thermodynamic quantities of the black objects by means of the Euclidean formulation and find that we have no necessity of requiring any regularization to calculate their classical action. We show that there exist the Bekenstein-Hawking law and the thermodynamic first law. The thermodynamic mass of the localized black hole on a flat brane is negative, and it differs from the one previously derived. We discuss the thermodynamic stabilities and show that the BTZ black string is more stable than the localized black holes in a canonical ensemble, except for an extreme case. We also find a braneworld analogue of the Hawking-Page transition between the BTZ black string and thermal AdS branes. The localized black holes on a de Sitter brane is discussed by considering Nariai instanton, comparing the study of "black cigar" in the five-dimensional braneworld model.Comment: 15 pages, 4 figures, RevTex4, typos fixed, minor correction

    Confirmation of a one-dimensional spin-1/2 Heisenberg system with ferromagnetic first-nearest-neighbor and antiferromagnetic second-nearest-neighbor interactions in Rb2{}_{2}Cu2{}_{2}Mo3{}_{3}O12{}_{12}

    Full text link
    We have investigated magnetic properties of Rb2_2Cu2_2Mo3_3O12_{12} powder. Temperature dependence of magnetic susceptibility and magnetic-field dependence of magnetization have shown that this cuprate is a model compound of a one-dimensional spin-1/2 Heisenberg system with ferromagnetic first-nearest-neighbor (1NN) and antiferromagnetic second-nearest-neighbor (2NN) competing interactions (competing system). Values of the 1NN and 2NN interactions are estimated as J1=−138J_1 = -138 K and J2=51J_2 = 51 K (α≡J2/J1=−0.37\alpha \equiv J_2 / J_1 = -0.37). This value of α\alpha suggests that the ground state is a spin-singlet incommensurate state. In spite of relatively large J1J_1 and J2J_2, no magnetic phase transition appears down to 2 K, while an antiferromagnetic transition occurs in other model compounds of the competing system with ferromagnetic 1NN interaction. For that reason, Rb2_2Cu2_2Mo3_3O12_{12} is an ideal model compound to study properties of the incommensurate ground state that are unconfirmed experimentally.Comment: 6 pages, 4 figure

    Chiral Magnetic Effect from Q-balls

    Full text link
    We apply a generic framework of linear sigma models for revealing a mechanism of the mysterious phenomenon, the chiral magnetic effect, in quark-gluon plasma. An electric current arises along a background magnetic field, which is given rise to by Q-balls (non-topological solitons) of the linear sigma model with axial anomaly. We find additional alternating current due to quark mass terms. The hadronic Q-balls, baby boson stars, may be created in heavy-ion collisions.Comment: 4 pages, 3 figures, revtex; v2: minor revisio
    • …
    corecore