8,697 research outputs found
Diffusion and Transport Coefficients in Synthetic Opals
Opals are structures composed of the closed packing of spheres in the size
range of nano-to-micro meter. They are sintered to create small necks at the
points of contact. We have solved the diffusion problem in such structures. The
relation between the diffusion coefficient and the termal and electrical
conductivity makes possible to estimate the transport coefficients of opal
structures. We estimate this changes as function of the neck size and the
mean-free path of the carriers. The theory presented is also applicable to the
diffusion problem in other periodic structures.Comment: Submitted to PR
Parametrically constrained geometry relaxations for high-throughput materials science
Reducing parameter spaces via exploiting symmetries has greatly accelerated and increased the quality of electronic-structure calculations. Unfortunately, many of the traditional methods fail when the global crystal symmetry is broken, even when the distortion is only a slight perturbation (e.g., Jahn-Teller like distortions). Here we introduce a flexible and generalizable parametric relaxation scheme and implement it in the all-electron code FHI-aims. This approach utilizes parametric constraints to maintain symmetry at any level. After demonstrating the method’s ability to relax metastable structures, we highlight its adaptability and performance over a test set of 359 materials, across 13 lattice prototypes. Finally we show how these constraints can reduce the number of steps needed to relax local lattice distortions by an order of magnitude. The flexibility of these constraints enables a significant acceleration of high-throughput searches for novel materials for numerous applications
Helping to distinguish primary from secondary transfer events for trace DNA.
DNA is routinely recovered in criminal investigations. The sensitivity of laboratory equipment and DNA profiling kits means that it is possible to generate DNA profiles from very small amounts of cellular material. As a consequence, it has been shown that DNA we detect may not have arisen from a direct contact with an item, but rather through one or more intermediaries. Naturally the questions arising in court, particularly when considering trace DNA, are of how DNA may have come to be on an item. While scientists cannot directly answer this question, forensic biological results can help in discriminating between alleged activities. Much experimental research has been published showing the transfer and persistence of DNA under varying conditions, but as of yet the results of these studies have not been combined to deal with broad questions about transfer mechanisms. In this work we use published data and Bayesian networks to develop a statistical logical framework by which questions of transfer mechanism can be approached probabilistically. We also identify a number of areas where further work could be carried out in order to improve our knowledge base when helping to address questions about transfer mechanisms. Finally, we apply the constructed Bayesian network to ground truth known data to determine if, with current knowledge, there is any power in DNA quantities to distinguish primary and secondary transfer events
A Multiwavelength Analysis of the Strong Lensing Cluster RCS 022434-0002.5 at z=0.778
We present the results of two (101 ks total) Chandra observations of the
z=0.778 optically selected lensing cluster RCS022434-0002.5, along with weak
lensing and dynamical analyses of this object. An X-ray spectrum extracted
within R(2500) (362 h(70)^(-1) kpc) results in an integrated cluster
temperature of 5.1 (+0.9,-0.5) keV. The surface brightness profile of
RCS022434-0002.5 indicates the presence of a slight excess of emission in the
core. A hardness ratio image of this object reveals that this central emission
is primarily produced by soft X-rays. Further investigation yields a cluster
cooling time of 3.3 times 10^9 years, which is less than half of the age of the
universe at this redshift given the current LCDM cosmology. A weak lensing
analysis is performed using HST images, and our weak lensing mass estimate is
found to be in good agreement with the X-ray determined mass of the cluster.
Spectroscopic analysis reveals that RCS022434-0002.5 has a velocity dispersion
of 900 +/- 180 km/s, consistent with its X-ray temperature. The core gas mass
fraction of RCS022434-0002.5 is, however, found to be three times lower than
expected universal values. The radial distribution of X-ray point sources
within R(200) of this cluster peaks at ~0.7 R(200), possibly indicating that
the cluster potential is influencing AGN activity at that radius. Correlations
between X-ray and radio (VLA) point source positions are also examined.Comment: 32 pages, 9 figures. Accepted for publication in The Astrophysical
Journa
Double Contact During Drop Impact on a Solid Under Reduced Air Pressure
This study was supported by King Abdullah University of Science and Technology (KAUST) under URF/1/2621-01-01. Li acknowledges the Thousand Young Talents Program of the National Natural Science Foundation of China (Grant 11621202) and Fundamental Research Funds for the Central Universities (Grant WK2090050041).Peer reviewedPublisher PD
Discovery of a New Nearby Star
We report the discovery of a nearby star with a very large proper motion of
5.06 +/- 0.03 arcsec/yr. The star is called SO025300.5+165258 and referred to
herein as HPMS (high proper motion star). The discovery came as a result of a
search of the SkyMorph database, a sensitive and persistent survey that is well
suited for finding stars with high proper motions. There are currently only 7
known stars with proper motions > 5 arcsec/yr. We have determined a preliminary
value for the parallax of 0.43 +/- 0.13 arcsec. If this value holds our new
star ranks behind only the Alpha Centauri system (including Proxima Centauri)
and Barnard's star in the list of our nearest stellar neighbors. The spectrum
and measured tangential velocity indicate that HPMS is a main-sequence star
with spectral type M6.5. However, if our distance measurement is correct, the
HPMS is underluminous by 1.2 +/- 0.7 mag.Comment: 5 pages, 3 figures. Submitted to ApJ Letter
Measuring Temperature Gradients over Nanometer Length Scales
When a quantum dot is subjected to a thermal gradient, the temperature of
electrons entering the dot can be determined from the dot's thermocurrent if
the conductance spectrum and background temperature are known. We demonstrate
this technique by measuring the temperature difference across a 15 nm quantum
dot embedded in a nanowire. This technique can be used when the dot's energy
states are separated by many kT and will enable future quantitative
investigations of electron-phonon interaction, nonlinear thermoelectric
effects, and the effciency of thermoelectric energy conversion in quantum dots.Comment: 6 pages, 5 figure
New Measurements of the Motion of the Zodiacal Dust
Using the Wisconsin H-Alpha Mapper (WHAM), we have measured at high spectral
resolution and high signal-to-noise the profile of the scattered solar Mg I
5184 absorption line in the zodiacal light. The observations were carried out
toward 49 directions that sampled the ecliptic equator from solar elongations
of 48\dg (evening sky) to 334\dg (morning sky) plus observations near +47\dg
and +90\dg ecliptic latitude. The spectra show a clear prograde kinematic
signature that is inconsistent with dust confined to the ecliptic plane and in
circular orbits influenced only by the sun's gravity. In particular, the
broadened widths of the profiles, together with large amplitude variations in
the centroid velocity with elongation angle, indicate that a significant
population of dust is on eccentric orbits. In addition, the wide, flat-bottomed
line profile toward the ecliptic pole indicates a broad distribution of orbital
inclinations extending up to about 30\dg - 40\dg with respect to the ecliptic
plane. The absence of pronounced asymmetries in the shape of the profiles
limits the retrograde population to less than 10% of the prograde population
and also places constraints on the scattering phase function of the particles.
These results do not show the radial outflow or evening--morning velocity
amplitude asymmetry reported in some earlier investigations. The reduction of
the spectra included the discovery and removal of extremely faint, unidentified
terrestrial emission lines that contaminate and distort the underlying Mg I
profile. This atmospheric emission is too weak to have been seen in earlier,
lower signal-to-noise observations, but it probably affected the line centroid
measurements of previous investigations.Comment: 24 pages, 8 figures, 1 table, to appear in ApJ v612; figures appear
low-res only on scree
- …