44 research outputs found

    Observed variations in turbulent mixing efficiency in the deep ocean

    Get PDF
    Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1815-1830, doi:10.1175/JPO-D-17-0275.1.Recent progress in direct numerical simulations (DNSs) of stratified turbulent flows has led to increasing attention to the validity of the constancy of the dissipation flux coefficient Γ in the Osborn’s eddy diffusivity model. Motivated by lack of observational estimates of Γ, particularly under weakly stratified deep-ocean conditions, this study estimates Γ using deep microstructure profiles collected in various regions of the North Pacific and Southern Oceans. It is shown that Γ is not constant but varies significantly with the Ozmidov/Thorpe scale ratio ROT in a fashion similar to that obtained by previous DNS studies. Efficient mixing events with Γ ~ O(1) and ROT ~ O(0.1) tend to be frequently observed in the deep ocean (i.e., weak stratification), while moderate mixing events with Γ ~ O(0.1) and ROT ~ O(1) tend to be observed in the upper ocean (i.e., strong stratification). The observed negative relationship between Γ and ROT is consistent with a simple scaling that can be derived from classical turbulence theories. In contrast, the observed results exhibit no definite relationships between Γ and the buoyancy Reynolds number Reb, although Reb has long been thought to be another key parameter that controls Γ.This study was supported by MEXT KAKENHI Grant JP15H05824 and JSPS KAKENHI Grant JP15H02131.2019-02-1

    Message from the new Editor-in-Chief

    Full text link

    Measuring offshore tsunami currents using ship navigation records

    No full text
    Abstract We investigated ship navigation records known as Automatic Identification System (AIS) data near the source region of the 2011 Tohoku, Japan, tsunami. The AIS data of 16 ships in the offshore navigation could be compiled by about 40 min after the tsunami generation. Most of the AIS data showed notable deviation of the ship heading from the course over ground during the tsunami passage. There was good agreement in terms of amplitude/phase between the ship velocity and the simulated tsunami velocity in the direction normal to the ship heading. An equation of motion due to wave drag and inertia forces was examined for an offshore movable floating body. We explain that the ship movement in the direction normal to the heading immediately responds to the tsunami current, and relative velocity between the ship and the tsunami current asymptotically become zero. This indicates the movement velocity of navigating ships in the direction normal to the heading derived from AIS data will work as an offshore tsunami current meter. We examined the AIS data during the 2011 Tohoku tsunami and showed these data could be useful for tsunami source estimation and forecast. The AIS data in the current framework will possibly be a crowd-sourced tool for monitoring offshore tsunami current and tsunami forecast
    corecore