330 research outputs found

    A magnetic isolation and pointing system for the astrometric telescope facility

    Get PDF
    The astrometric telescope facility (ATF), a 20-meter telescope designed for long-term detection and observation of planetary systems outside of the solar system, is scheduled to be a major user of the Space Station's payload pointing system (PPS) capabilities. However, because the ATF has such a stringent pointing stability specification (as low as 0.01 arcsec error over the frequency range from 5 to 200 hertz) and requires +/- 180-degree roll rotation around the telescope's line of sight, the ATF's utilization of the PPS requires the addition of a mechanism or mechanisms to enhance the basic PPS capabilities. The results of a study conducted to investigate the ATF pointing performance achievable by the addition of a magnetic isolation and pointing (MIPS) system between the PPS upper gimbal and the ATF, and separately, by the addition of a passive isolation system between the Space Station and the PPS base are presented. In addition, the study produced requirements on magnetic force and gap motion as a function of the level of Space Station disturbance. These results were used to support the definition of a candidate MIPS. Pointing performance results from the study indicate that a MIPS can meet the ATF pointing requirements in the presence of a PPS base transitional acceleration of up to 0.018g, with reasonable restrictions placed on the isolation and pointing bandwidths. By contrast, the passive base isolator system must have an unrealistically low isolation bandwidth on all axes (less than 0.1 hertz) to meet ATF pointing requirements. The candidate MIPS is based on an assumed base translational disturbance of 0.01g. The system fits within the available annular region between the PPS and ATF while meeting power and weight limitations and providing the required payload roll motion. Payload data and power services are provided by noncontacting transfer devices

    Astrometric Telescope Facility isolation and pointing study

    Get PDF
    The Astrometric Telescope Facility (ATF), an optical telescope designed to detect extrasolar planetary systems, is scheduled to be a major user of the Space Station's Payload Pointing System (PPS). However, because the ATF has such a stringent pointing stability specification and requires + or - 180 deg roll about its line of sight, mechanisms to enhance the basic PPS capability are required. The ATF pointing performance achievable by the addition of a magnetic isolation and pointing system (MIPS) between the PPS upper gimbal and the ATF, and separately, by the addition of a passive isolation system between the Space Station and the PPS base was investigated. The candidate MIPS can meet the ATF requirements in the presence of a 0.01 g disturbance. It fits within the available annular region between the PPS and the ATF while meeting power and weight limitations and providing the required roll motion, payload data and power services. By contrast, the passive base isolator system must have an unrealistically low isolation bandwidth on all axes to meet ATF pointing requirements and does not provide roll about the line of sight

    Phonon dynamics in the layered negative thermal expansion compounds CuxNi2-x(CN)4

    Get PDF
    This study explores the relationship between phonon dynamics and negative thermal expansion (NTE) in CuxNi2-x¬(CN)4. The partial replacement of nickel (II) by copper (II) in Ni(CN)2 leads to a line phase, CuNi(CN)4 (x = 1), and a solid solution, CuxNi2-x¬(CN)4 (0 ≤ x ≤ 0.5). CuNi(CN)4 adopts a layered structure related to that of Ni(CN)2¬ (x = 0), and interestingly exhibits 2D NTE which is ~ 1.5 times larger. Inelastic neutron scattering (INS) measurements combined with first principles lattice dynamical calculations provide insights into the effect of Cu2+ on the underlying mechanisms behind the anomalous thermal behavior in all the CuxNi2-x¬(CN)4 compounds. The solid solutions are presently reported to also show 2D NTE. The INS results highlight that as the Cu2+ content increases in CuxNi2-x(CN)4, large shifts to lower energies are observed in modes consisting of localized in- and out-of-plane librational motions of the CN ligand, which contribute to the NTE in CuNi(CN)4. Mode Grüneisen parameters calculated for CuNi(CN)4 show that acoustic and low-energy optic modes contribute the most to the NTE, as previously shown in Ni(CN)2. However, mode eigenvectors reveal a large deformation of the [CuN4] units compared to the [NiC4] units, resulting in phonon modes not found in Ni(CN)2, whose NTE-driving phonons consist predominately of rigid-unit modes. The deformations in CuNi(CN)4 arise because the d9 square-planar center is easier to deform than the d8 one, resulting in a greater range of out-of-plane motions for the adjoining ligands

    Anomalous thermal expansion in 1D transition-metal cyanides: what makes the novel trimetallic cyanide Cu1/3Ag1/3Au1/3CN behave differently?

    Get PDF
    The structural dynamics of a quasi-one-dimensional (1D) mixed-metal cyanide, Cu1/3Ag1/3Au1/3CN, with intriguing thermal properties is explored. All the current known related compounds with straight-chain structures, such as group 11 cyanides CuCN, AgCN, AuCN and bimetallic cyanides MxM’1-xCN (M, M’ = Cu, Ag, Au), exhibit 1D negative thermal expansion (NTE) along the chains and positive thermal expansion (PTE) perpendicular to them. Cu1/3Ag1/3Au1/3CN exhibits similar PTE perpendicular to the chains, however PTE, rather than NTE, is also observed along the chains. In order to understand the origin of this unexpected behavior, inelastic neutron scattering (INS) measurements were carried out, underpinned by lattice-dynamical density-functional-theory (DFT) calculations. Synchrotron-based pair-distribution-function (PDF) analysis and 13C solid-state nuclear-magnetic-resonance (SSNMR) measurements were also performed to build an input structural model for the lattice dynamical study. The results indicate that transverse motions of the metal ions are responsible for the PTE perpendicular to the chains, as is the case for the related group 11 cyanides. However NTE along the chain due to the tension effect of these transverse motions is not observed. As there are different metal-to-cyanide bond lengths in Cu1/3Ag1/3Au1/3CN, the metals in neighboring chains cannot all be truly co-planar in a straight-chain model. For this system, DFT-based phonon calculations predict small PTE along the chain due to low-energy chain-slipping modes induced by a bond-rotation effect on the weak metallophilic bonds. However the observed PTE is greater than that predicted with the straight-chain model. Small bends in the chain to accommodate truly co-planar metals provide an alternative explanation for thermal behavior. These would mitigate the tension effect induced by the transverse motions of the metals and, as temperature increases and the chains move further apart, a straightening could occur resulting in the observed PTE. This hypothesis is further supported by unusual evolution in the phonon spectra, which suggest small changes in local symmetry with temperature

    PASCal: A principal-axis strain calculator for thermal expansion and compressibility determination

    Full text link
    We describe a web-based tool (PASCal; Principal Axis Strain Calculator) aimed at simplifying the determination of principal coefficients of thermal expansion and compressibilities from variable-temperature and variable-pressure lattice parameter data. In a series of three case studies, we use PASCal to re-analyse previously-published lattice parameter data and show that additional scientific insight is obtainable in each case. First, the two-dimensional metal-organic framework Cu-SIP-3 is found to exhibit the strongest area-negative thermal expansion (NTE) effect yet observed; second, the widely-used explosive HMX exhibits much stronger mechanical anisotropy than had previously been anticipated, including uniaxial NTE driven by thermal changes in molecular conformation; and, third, the high-pressure form of the mineral malayaite is shown to exhibit a strong negative linear compressibility (NLC) effect that arises from correlated tilting of SnO6 and SiO4 coordination polyhedra.Comment: 31 pages, 8 figures, formatted as preprint for J. Appl. Crys

    Magnetic Phase Transitions in the double spin-chains compound LiCu2O2\rm LiCu_2O_2

    Full text link
    We report high-resolution x-ray diffraction, muon-spin-rotation spectroscopic and specific heat measurements in the double spin-chains compound LiCu2O2\rm LiCu_2O_2. The x-ray diffraction results show that the crystal structure of LiCu2O2\rm LiCu_2O_2 ~is orthorhombic down to T=10K. Anisotropic line-broadening of the diffraction peaks is observed, indicating disorder along the spin chains. Muon spin relaxation and specific heat measurements show that LiCu2O2\rm LiCu_2O_2 \~undergoes a phase transition to a magnetic ordered state at T124K\rm T_1\sim24K. The specific heat data exhibits a second λ\rm \lambda-like peak at T222.5K\rm T_2\sim22.5 K, which increases with increasing magnetic field similarly way to that found in spin-ladder compounds.Comment: 6 pages, 6 fifures, to appear in Physica

    Lattice dynamics and negative thermal expansion in the framework compound ZnNi(CN)4 with 2-D and 3-D local environments

    Get PDF
    ZnNi(CN)4 is a 3-D framework material consisting of two interpenetrating PtS-type networks in which tetrahedral [ZnN4] units are linked by square-planar [NiC4] units. Both the parent compounds, cubic Zn(CN)2 and layered Ni(CN)2, are known to exhibit 3-D and 2-D negative thermal expansion (NTE), respectively. Temperature-dependent inelastic neutron scattering (INS) measurements were performed on a powdered sample of ZnNi(CN)4 to probe phonon dynamics. The measurements were underpinned by ab-initio lattice dynamical calculations. Good agreement was found between the measured and calculated generalized phonon density-of-states, validating our theoretical model and indicating that it is a good representation of the dynamics of the structural units. The calculated linear thermal expansion coefficients are αa = -21.2 × 10-6 K-1 and αc = +14.6 × 10-6 K-1, leading to an overall volume expansion coefficient, αV of -26.95 × 10-6 K-1, pointing towards pronounced NTE behaviour. Analysis of the derived mode-Grüneisen parameters shows that the optic modes around 12 and 40 meV make a significant contribution to the NTE. These modes involve localised rotational motions of the [NiC4] and/or [ZnN4] rigid units, echoing what has previously been observed in Zn(CN)2 and Ni(CN)2. However, in ZnNi(CN)4, modes below 10 meV have the most negative Grüneisen parameters. Analysis of their eigenvectors reveals that a large transverse motion of the Ni atom in the direction perpendicular to its square-planar environment induces a distortion of the units. This mode is a consequence of the Ni atom being constrained only in two dimensions within a 3-D framework. Hence, although rigid-unit modes account for some of the NTE-driving phonons, the added degree of freedom compared with Zn(CN)2 results in modes with twisting motions, capable of inducing greater NTE

    catena-Poly[[(2,2′-bipyridine-κ2 N,N′)copper(I)]-μ-cyanido-κ2 C:N-[(2,2′-bipyridine-κ2 N,N′)copper(I)]-μ-thio­cyanato-κ2 S:N]

    Get PDF
    The title compound, [Cu2(CN)(SCN)(C10H8N2)2]n, contains two crystallographically independent CuI atoms, each in a distorted tetra­hedral geometry. Each Cu atom is coordinated by a bidentate chelating 2,2′-bipyridine ligand. A bridging cyanide anion links the two Cu(2,2′-bipyridine) units to form a binuclear unit. Adjacent binuclear units are connected by a thio­cyanate anion into a one-dimensional helical chain along [010]. The cyanide anion is disordered, with each site occupied by both C and N atoms in an occupancy ratio of 0.61 (5):0.39 (5). The S atom of the thio­cyanate anion is also disordered over two sites, with occupancy factors of 0.61 (3) and 0.39 (3). There are π–π inter­actions between the pyridyl rings of neighbouring chains [centroid–centroid distance = 3.82 (1) Å]
    corecore