5 research outputs found
Effectiveness of the Fungal Metabolite 3-O-Methylfunicone towards Canine Coronavirus in a Canine Fibrosarcoma Cell Line (A72)
Canine coronavirus (CCoV), an alphacoronavirus, may cause self-limiting enteric disease in dogs, especially in puppies. The noteworthy plasticity of coronaviruses (CoVs) occurs through mutation and recombination processes, which sometimes generate new dangerous variants. The ongoing SARS-CoV-2 pandemic and the isolation of a novel canine–feline recombinant alphacoronavirus from humans emphasizes the cross-species transmission ability of CoVs. In this context, exploring antiviral compounds is essential to find new tools for fighting against CoVs infections. Fungi produce secondary metabolites, which are often developed as antibiotics, fungicides, hormones, and plant growth regulators. Previous examinations of benzo-γ-pyrone 3-O-methylfunicone (OMF), obtained from Talaromyces pinophilus, showed that it reduces the infectivity of hepatitis C virus and bovine herpesvirus 1. Based on this evidence, this study evaluated the antiviral ability of OMF against CCoV infection in a canine fibrosarcoma (A72) cell line. During CCoV infection, a non-toxic dose of OMF markedly increased features of cell viability. Moreover, OMF induced a significant reduction in virus yield in the presence of an intense downregulation of the viral nucleocapsid protein (NP). These findings occurred in the presence of a marked reduction in the aryl hydrocarbon receptor (AhR) expression. Taken together, preliminary findings suggest that OMF inhibiting AhR shows promising activity against CCoV infection
A First Assessment of SARS-CoV-2 Circulation in Bats of Central–Southern Italy
One serious concern associated with the SARS-CoV-2 pandemic is that the virus might spill back from humans to wildlife, which would render some animal species reservoirs of the human virus. We assessed the potential circulation of SARS-CoV-2 caused by reverse infection from humans to bats, by performing bat surveillance from different sites in Central–Southern Italy. We restricted our survey to sampling techniques that are minimally invasive and can therefore be broadly applied by non-medical operators such as bat workers. We collected 240 droppings or saliva from 129 bats and tested them using specific and general primers for SARS-CoV-2 and coronaviruses, respectively. All samples (127 nasal swabs and 113 faecal droppings) were negative for SARS-CoV-2, and these results were confirmed by testing the samples with the Droplet Digital PCR. Additionally, pancoronavirus end-point RT-PCR was performed, and no sample showed specific bands. This outcome is a first step towards a better understanding of the reverse transmission of this virus to bats. Although the occurrence of a reverse zoonotic pattern can only be fully established by serological testing, the latter might represent an in-depth follow-up to a broad-scale preliminary assessment performed with our approach. We encourage the systematic surveillance of bats to help prevent reverse zoonotic episodes that would jeopardize human health, as well as biodiversity conservation and management
Comparison of conventional and novel molecular diagnostic methods for detection of Xylella fastidiosa from insect vectors
The efficiency of three diagnostic methods, i.e. PCR, real-time PCR and
LAMP, for detection of Xylella fastidiosa (Xf) genomic DNA from Philaenus spumarius
(Ps) and Neophilaenus campestris (Nc) insect vectors was evaluated using three total
nucleic acids (TNA) extraction methods (EM). In addition, a new real-time LAMP
technology, Fluorescence of Loop Primer Upon Self Dequenching-LAMP (FLOSLAMP), originally developed for human virus diagnoses, was optimized and assessed
for detection of Xf in insect vectors. EM1 consisted of entire insects heated in an
extraction buffer (EB) containing Tris-EDTA and TRITON-X100. In EM2, TNAs were
extracted only from excised heads of insects, and heated again in the EB of EM1. EM3
consisted of grinding entire insects, heads and bodies recuperated from EM2, with a
CTAB buffer. The molecular analyses conducted on 100 specimens of Ps and 50 of Nc,
collected from a Xf-infected olive orchard (Lecce province, Italy), showed that 29% of
specimens (40 Ps and four Nc) were positive to the presence of Xf. The comparison
between the three methods revealed that EM3 is the most efficient for extracting Xfgenomic DNA from insect vectors, of which 44 specimens were positive for Xf in each
of the diagnostic methods used, including the newly optimized FLOS-LAMP assay.
In general, the real-time PCR and LAMP assays were more competent than the conventional PCR for detection of Xf in insect vectors, independently from the EM used.
The newly optimized FLOS-LAMP technique had a detection limit of 1 fg μL-1 of Xfgenomic DNA, compared to the 10 fg μL-1 for conventional LAMP. The high sensitivity of the FLOS-LAMP was evident through the greater number of overall Xf-infected
insect vectors detected (60%), compared to those for LAMP (45%,), real-time PCR
(28%) and PCR (10%). FLOS-LAMP, being a more sensitive and specific assay, together
with EM3, were the most appropriate approaches for an accurate detection of Xf in
insect vectors
Development of an FTP-LAMP assay based on TaqMan real-time PCR and LAMP for the specific detection of Xylella fastidiosa De Donno and mulberry strains in both plants and insect vectors
We developed two real-time detection assays, TaqMan real-time PCR and LAMP, using primers and probe designed based on a sequence annotated to code for a Haemagglutinin-related protein (Hg) of Xylella fastidiosa (Xf), a gene uniquely present in the Italian olive (De Donno of olive) and American mulberry strains, for specific detection of the target Xf strains. These assays were validated with DNA samples extracted from Xf-infected plant samples and from two species of insect vectors (Philaenus spumarius, Ps; and Neophilaenus campestris, Nc). Both techniques were proven to be highly sensitive (100 fg of Xf-genomic DNA) and specific to the Italian De Donno and American mulberry strains of Xf. When our LAMP was utilized in a duplex manner by combining with previously published universal primers and probe for detection of all Xf-subspecies and strains, the duplex LAMP showed high versatility in the simultaneous detection and differentiation of the Italian De Donno and American mulberry stains form other subspecies/strains. Furthermore, the Hg gene-specific LAMP primers and TaqMan probe were exploited to develop a new approach; henceforth referred to as the Fluorescence of TaqMan Probe upon Dequenching - Loop mediated Isothermal Amplification (FTP-LAMP). In the FTP-LAMP, the Xf-Hg specific fluorophore-quenched probe was added to a standard LAMP reaction and fluoresces only when bound to its target, allowing for a sequence-specific detection of the Xf-Italian De Donno and American mulberry strains in a LAMP context. Our FTP-LAMP assay showed to be highly sensitive detecting down to 100 fg genomic DNA of Xf, when tested on Xf-genomic DNA extracted from infected plants, DAS-ELISA-crude saps and insect vectors. Furthermore, the assay showed high specificity (98.7% vs 89% for LAMP) when applied on DNA templates from insect vectors. With the addition of an extra target sequence-specific probe acting as a direct Xf-specific dye, the FTP-LAMP has gained more specificity and reduced one of the main problems of the LAMP assay (false positives) when used for detecting of Xf in insect vectors. To the best of our knowledge, this study reports the development of the first LAMP assay and the first novel FTP-LAMP method for specific detection of the Italian De Donno and the American mulberry strains of Xf. Together with the Xf universal LAMP primers in a duplex approach, the FTP-LAMP could represent a useful tool not only for the specific detection of the olive-associated strain in Italy, but also to differentiate the De Donno strain from other strains of Xf already reported in Italy and Europe (Germany, France, Spain and Portugal)
A First Assessment of SARS-CoV-2 Circulation in Bats of Central–Southern Italy
One serious concern associated with the SARS-CoV-2 pandemic is that the virus might spill back from humans to wildlife, which would render some animal species reservoirs of the human virus. We assessed the potential circulation of SARS-CoV-2 caused by reverse infection from humans to bats, by performing bat surveillance from different sites in Central–Southern Italy. We restricted our survey to sampling techniques that are minimally invasive and can therefore be broadly applied by non-medical operators such as bat workers. We collected 240 droppings or saliva from 129 bats and tested them using specific and general primers for SARS-CoV-2 and coronaviruses, respectively. All samples (127 nasal swabs and 113 faecal droppings) were negative for SARS-CoV-2, and these results were confirmed by testing the samples with the Droplet Digital PCR. Additionally, pancoronavirus end-point RT-PCR was performed, and no sample showed specific bands. This outcome is a first step towards a better understanding of the reverse transmission of this virus to bats. Although the occurrence of a reverse zoonotic pattern can only be fully established by serological testing, the latter might represent an in-depth follow-up to a broad-scale preliminary assessment performed with our approach. We encourage the systematic surveillance of bats to help prevent reverse zoonotic episodes that would jeopardize human health, as well as biodiversity conservation and management