70 research outputs found

    Bacillus cereus DNA topoisomerase I and IIIα: purification, characterization and complementation of Escherichia coli TopoIII activity

    Get PDF
    The Bacillus cereus genome possesses three type IA topoisomerase genes. These genes, encoding DNA topoisomerase I and IIIα (bcTopo I, bcTopo IIIα), have been cloned into T7 RNA polymerase-regulated plasmid expression vectors and the enzymes have been overexpressed, purified and characterized. The proteins exhibit similar biochemical activity to their Escherichia coli counterparts, DNA topoisomerase I and III (ecTopo I, ecTopo III). bcTopo I is capable of efficiently relaxing negatively supercoiled DNA in the presence of Mg(2+) but does not possess an efficient DNA decatenation activity. bcTopo IIIα is an active topoisomerase that is capable of relaxing supercoiled DNA at a broad range of Mg(2+) concentrations; however, its DNA relaxation activity is not as efficient as that of bcTopo I. In addition, bcTopo III is a potent DNA decatenase that resolves oriC-based plasmid replication intermediates in vitro. Interestingly, bcTopo I and bcTopo IIIα are both able to compensate for the loss of ecTopo III in E.coli cells that lack ecTopo I. In contrast, ecTopo I cannot substitute for ecTopo III under these conditions

    RecA can stimulate the relaxation activity of topoisomerase I: Molecular basis of topoisomerase-mediated genome-wide transcriptional responses in Escherichia coli

    Get PDF
    The superhelicity of the chromosome, which is controlled by DNA topoisomerases, modulates global gene expression. Investigations of transcriptional responses to the modulation of gyrase function have identified two types of topoisomerase-mediated transcriptional responses: (i) steady-state changes elicited by a mutation in gyrase, such as the D82G mutation in GyrA, and (ii) dynamic changes elicited by the inhibition of gyrase. We hypothesize that the steady-state effects are due to the changes in biochemical properties of gyrase, whereas the dynamic effects are due to an imbalance between supercoiling and relaxation activities, which appears to be influenced by the RecA activity. Herein, we present biochemical evidence for hypothesized mechanisms. GyrA D82G gyrase exhibits a reduced supercoiling activity. The RecA protein can influence the balance between supercoiling and relaxation activities either by interfering with the activity of DNA gyrase or by facilitating the relaxation reaction. RecA has no effect on the supercoiling activity of gyrase but stimulates the relaxation activity of topoisomerase I. This stimulation is specific and requires formation of an active RecA filament. These results suggest that the functional interaction between RecA and topoisomerase I is responsible for RecA-mediated modulation of the relaxation-dependent transcriptional activity of the Escherichia coli chromosome

    THE EXPRESSION OF THE fms GENE AND THE GENE PRODUCT IN THYROID TUMOR

    Get PDF
    The amplification of the fms gene DNA was investigated in 5 human thyroid tumors. No significant amplification or rearrangement was observed in tumor DNA. The expression of the fms gene product was also investigated in 20 thyroid tumor tissues embedded in paraffin using a polyclonal antibody to the fms oncogene product immunohistochemically. Ten out of 20 samples showed clearly positive, 6 out of 20 were weakly positive but 4 out of 20 were negative. Therefore, the fms oncogene might play an important role for thyroid carcinogenesis, and it might also be of possible importance for understanding the mechanism of thyroid carcinogenesis

    Quinolones: Action and Resistance Updated

    Get PDF
    The quinolones trap DNA gyrase and DNA topoisomerase IV on DNA as complexes in which the DNA is broken but constrained by protein. Early studies suggested that drug binding occurs largely along helix-4 of the GyrA (gyrase) and ParC (topoisomerase IV) proteins. However, recent X-ray crystallography shows drug intercalating between the -1 and +1 nucleotides of cut DNA, with only one end of the drug extending to helix-4. These two models may reflect distinct structural steps in complex formation. A consequence of drug-enzyme-DNA complex formation is reversible inhibition of DNA replication; cell death arises from subsequent events in which bacterial chromosomes are fragmented through two poorly understood pathways. In one pathway, chromosome fragmentation stimulates excessive accumulation of highly toxic reactive oxygen species that are responsible for cell death. Quinolone resistance arises stepwise through selective amplification of mutants when drug concentrations are above the MIC and below the MPC, as observed with static agar plate assays, dynamic in vitro systems, and experimental infection of rabbits. The gap between MIC and MPC can be narrowed by compound design that should restrict the emergence of resistance. Resistance is likely to become increasingly important, since three types of plasmid-borne resistance have been reported

    Positive Regulation of S-Adenosylmethionine on Chondrocytic Differentiation via Stimulation of Polyamine Production and the Gene Expression of Chondrogenic Differentiation Factors

    Get PDF
    S-adenosylmethionine (SAM) is considered to be a useful therapeutic agent for degenerative cartilage diseases, although its mechanism is not clear. We previously found that polyamines stimulate the expression of differentiated phenotype of chondrocytes. We also found that the cellular communication network factor 2 (CCN2) played a huge role in the proliferation and differentiation of chondrocytes. Therefore, we hypothesized that polyamines and CCN2 could be involved in the chondroprotective action of SAM. In this study, we initially found that exogenous SAM enhanced proteoglycan production but not cell proliferation in human chondrocyte-like cell line-2/8 (HCS-2/8) cells. Moreover, SAM enhanced gene expression of cartilage-specific matrix (aggrecan and type II collagen), Sry-Box transcription factor 9 (SOX9), CCN2, and chondroitin sulfate biosynthetic enzymes. The blockade of the methionine adenosyltransferase 2A (MAT2A) enzyme catalyzing intracellular SAM biosynthesis restrained the effect of SAM on chondrocytes. The polyamine level in chondrocytes was higher in SAM-treated culture than control culture. Additionally, Alcian blue staining and RT-qPCR indicated that the effects of SAM on the production and gene expression of aggrecan were reduced by the inhibition of polyamine synthesis. These results suggest that the stimulation of polyamine synthesis and gene expression of chondrogenic differentiation factors, such as CCN2, account for the mechanism underlying the action of SAM on chondrocytes

    Identification of a mammalian vesicular polyamine transporter

    Get PDF
    Spermine and spermidine act as neuromodulators upon binding to the extracellular site(s) of various ionotropic receptors, such as N-methyl-d-aspartate receptors. To gain access to the receptors, polyamines synthesized in neurons and astrocytes are stored in secretory vesicles and released upon depolarization. Although vesicular storage is mediated in an ATP-dependent, reserpine-sensitive fashion, the transporter responsible for this process remains unknown. SLC18B1 is the fourth member of the SLC18 transporter family, which includes vesicular monoamine transporters and vesicular acetylcholine transporter. Proteoliposomes containing purified human SLC18B1 protein actively transport spermine and spermidine by exchange of H+. SLC18B1 protein is predominantly expressed in the hippocampus and is associated with vesicles in astrocytes. SLC18B1 gene knockdown decreased both SLC18B1 protein and spermine/spermidine contents in astrocytes. These results indicated that SLC18B1 encodes a vesicular polyamine transporter (VPAT)

    The antimicrobial lysine-peptoid hybrid LP5 inhibits DNA replication and induces the SOS response in Staphylococcus aureus

    Get PDF
    BACKGROUND: The increase in antibiotic resistant bacteria has led to renewed interest in development of alternative antimicrobial compounds such as antimicrobial peptides (AMPs), either naturally-occurring or synthetically-derived. Knowledge of the mode of action (MOA) of synthetic compounds mimicking the function of AMPs is highly valuable both when developing new types of antimicrobials and when predicting resistance development. Despite many functional studies of AMPs, only a few of the synthetic peptides have been studied in detail. RESULTS: We investigated the MOA of the lysine-peptoid hybrid, LP5, which previously has been shown to display antimicrobial activity against Staphylococcus aureus. At concentrations of LP5 above the minimal inhibitory concentration (MIC), the peptoid caused ATP leakage from bacterial cells. However, at concentrations close to the MIC, LP5 inhibited the growth of S. aureus without ATP leakage. Instead, LP5 bound DNA and inhibited macromolecular synthesis. The binding to DNA also led to inhibition of DNA gyrase and topoisomerase IV and caused induction of the SOS response. CONCLUSIONS: Our data demonstrate that LP5 may have a dual mode of action against S. aureus. At MIC concentrations, LP5 binds DNA and inhibits macromolecular synthesis and growth, whereas at concentrations above the MIC, LP5 targets the bacterial membrane leading to disruption of the membrane. These results add new information about the MOA of a new synthetic AMP and aid in the future design of synthetic peptides with increased therapeutic potential

    LL-Z1640-2 for rheumatoid arthritis

    Get PDF
    Objectives: Aberrant NLRP3 inflammasome activation has been demonstrated in rheumatoid arthritis (RA), which may contribute to debilitating inflammation and bone destruction. Here, we explored the efficacy of the potent TGF-β-activated kinase-1 (TAK1) inhibitor LL-Z1640-2 (LLZ) on joint inflammation and bone destruction in collagen-induced arthritis (CIA). Methods: LL-Z1640-2 was administered every other day in CIA mice. Clinical and histological evaluation was performed. Priming and activation of NLRP3 inflammasome and osteoclastogenic activity were assessed. Results: NLRP3 inflammasome formation was observed in synovial macrophages and osteoclasts (OCs) in CIA mice. TACE and RANKL were also overexpressed in synovial macrophages and fibroblasts, respectively, in the CIA joints. Treatment with LLZ mitigated all the above changes. As a result, LLZ markedly suppressed synovial hypertrophy and pannus formation to alleviate pain and inflammation in CIA mice. LLZ could block the priming and activation of NLRP3 inflammasome in RAW264.7 macrophage cell line, primary bone marrow macrophages and OCs upon treatment with LPS followed by ATP, thereby suppressing their IL-1β production. LLZ also suppressed LPS-induced production of TACE and TNF-α in bone marrow macrophages and abolished IL-1β-induced production of MMP-3, IL-6 and RANKL in synovial fibroblasts. In addition, LLZ directly inhibits RANKL-mediated OC formation and activation. Conclusion: TAK1 inhibition with LLZ may become a novel treatment strategy to effectively alleviate inflammasome-mediated inflammation and RANKL-induced osteoclastic bone destruction in joints alongside its potent suppression of TNF-α and IL-6 production and proteinase-mediated pathological processes in RA

    Emerging concepts in biomarker discovery; The US-Japan workshop on immunological molecular markers in oncology

    Get PDF
    Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations
    corecore