218 research outputs found
On the comparison of volumes of quantum states
This paper aims to study the \a-volume of \cK, an arbitrary subset of the
set of density matrices. The \a-volume is a generalization of the
Hilbert-Schmidt volume and the volume induced by partial trace. We obtain
two-side estimates for the \a-volume of \cK in terms of its Hilbert-Schmidt
volume. The analogous estimates between the Bures volume and the \a-volume
are also established. We employ our results to obtain bounds for the
\a-volume of the sets of separable quantum states and of states with positive
partial transpose (PPT). Hence, our asymptotic results provide answers for
questions listed on page 9 in \cite{K. Zyczkowski1998} for large in the
sense of \a-volume.
\vskip 3mm PACS numbers: 02.40.Ft, 03.65.Db, 03.65.Ud, 03.67.M
Fundamental properties of Tsallis relative entropy
Fundamental properties for the Tsallis relative entropy in both classical and
quantum systems are studied. As one of our main results, we give the parametric
extension of the trace inequality between the quantum relative entropy and the
minus of the trace of the relative operator entropy given by Hiai and Petz. The
monotonicity of the quantum Tsallis relative entropy for the trace preserving
completely positive linear map is also shown without the assumption that the
density operators are invertible.
The generalized Tsallis relative entropy is defined and its subadditivity is
shown by its joint convexity. Moreover, the generalized Peierls-Bogoliubov
inequality is also proven
Dynamical entropy of generalized quantum Markov chains on gauge invariant -algebras
We prove that the mean entropy and the dynamical entropy are equal for
generalized quantum Markov chains on gauge-invariant -algebras.Comment: 8 page
Free energy density for mean field perturbation of states of a one-dimensional spin chain
Motivated by recent developments on large deviations in states of the spin
chain, we reconsider the work of Petz, Raggio and Verbeure in 1989 on the
variational expression of free energy density in the presence of a mean field
type perturbation. We extend their results from the product state case to the
Gibbs state case in the setting of translation-invariant interactions of finite
range. In the special case of a locally faithful quantum Markov state, we
clarify the relation between two different kinds of free energy densities (or
pressure functions).Comment: 29 pages, Section 5 added, to appear in Rev. Math. Phy
Typical support and Sanov large deviations of correlated states
Discrete stationary classical processes as well as quantum lattice states are
asymptotically confined to their respective typical support, the exponential
growth rate of which is given by the (maximal ergodic) entropy. In the iid case
the distinguishability of typical supports can be asymptotically specified by
means of the relative entropy, according to Sanov's theorem. We give an
extension to the correlated case, referring to the newly introduced class of
HP-states.Comment: 29 pages, no figures, references adde
A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy II: Convexity and Concavity
We revisit and prove some convexity inequalities for trace functions
conjectured in the earlier part I. The main functional considered is
\Phi_{p,q}(A_1,A_2,...,A_m) = (trace((\sum_{j=1}^m A_j^p)^{q/p}))^{1/q} for m
positive definite operators A_j. In part I we only considered the case q=1 and
proved the concavity of \Phi_{p,1} for 0 < p \leq 1 and the convexity for p=2.
We conjectured the convexity of \Phi_{p,1} for 1< p < 2. Here we not only
settle the unresolved case of joint convexity for 1 \leq p \leq 2, we are also
able to include the parameter q\geq 1 and still retain the convexity. Among
other things this leads to a definition of an L^q(L^p) norm for operators when
1 \leq p \leq 2 and a Minkowski inequality for operators on a tensor product of
three Hilbert spaces -- which leads to another proof of strong subadditivity of
entropy. We also prove convexity/concavity properties of some other, related
functionals.Comment: Proof of a conjecture in math/0701352. Revised version replaces
earlier draft. 18 pages, late
Canonical moments and random spectral measures
We study some connections between the random moment problem and the random
matrix theory. A uniform draw in a space of moments can be lifted into the
spectral probability measure of the pair (A,e) where A is a random matrix from
a classical ensemble and e is a fixed unit vector. This random measure is a
weighted sampling among the eigenvalues of A. We also study the large
deviations properties of this random measure when the dimension of the matrix
grows. The rate function for these large deviations involves the reversed
Kullback information.Comment: 32 pages. Revised version accepted for publication in Journal of
Theoretical Probabilit
Quantum Games Entropy
We propose the study of quantum games from the point of view of quantum
information theory and statistical mechanics. Every game can be described by a
density operator, the von Neumann entropy and the quantum replicator dynamics.
There exists a strong relationship between game theories, information theories
and statistical physics. The density operator and entropy are the bonds between
these theories. The analysis we propose is based on the properties of entropy,
the amount of information that a player can obtain about his opponent and a
maximum or minimum entropy criterion. The natural trend of a physical system is
to its maximum entropy state. The minimum entropy state is a characteristic of
a manipulated system i.e. externally controlled or imposed. There exist tacit
rules inside a system that do not need to be specified or clarified and search
the system equilibrium under the collective welfare principle. The other rules
are imposed over the system when one or many of its members violate this
principle and maximize its individual welfare at the expense of the group.Comment: 6 page
- …