218 research outputs found

    Unitarily invariant norm inequalities for some means

    Get PDF

    On the comparison of volumes of quantum states

    Full text link
    This paper aims to study the \a-volume of \cK, an arbitrary subset of the set of N×NN\times N density matrices. The \a-volume is a generalization of the Hilbert-Schmidt volume and the volume induced by partial trace. We obtain two-side estimates for the \a-volume of \cK in terms of its Hilbert-Schmidt volume. The analogous estimates between the Bures volume and the \a-volume are also established. We employ our results to obtain bounds for the \a-volume of the sets of separable quantum states and of states with positive partial transpose (PPT). Hence, our asymptotic results provide answers for questions listed on page 9 in \cite{K. Zyczkowski1998} for large NN in the sense of \a-volume. \vskip 3mm PACS numbers: 02.40.Ft, 03.65.Db, 03.65.Ud, 03.67.M

    Fundamental properties of Tsallis relative entropy

    Get PDF
    Fundamental properties for the Tsallis relative entropy in both classical and quantum systems are studied. As one of our main results, we give the parametric extension of the trace inequality between the quantum relative entropy and the minus of the trace of the relative operator entropy given by Hiai and Petz. The monotonicity of the quantum Tsallis relative entropy for the trace preserving completely positive linear map is also shown without the assumption that the density operators are invertible. The generalized Tsallis relative entropy is defined and its subadditivity is shown by its joint convexity. Moreover, the generalized Peierls-Bogoliubov inequality is also proven

    Dynamical entropy of generalized quantum Markov chains on gauge invariant CC^*-algebras

    Full text link
    We prove that the mean entropy and the dynamical entropy are equal for generalized quantum Markov chains on gauge-invariant CC^*-algebras.Comment: 8 page

    Free energy density for mean field perturbation of states of a one-dimensional spin chain

    Full text link
    Motivated by recent developments on large deviations in states of the spin chain, we reconsider the work of Petz, Raggio and Verbeure in 1989 on the variational expression of free energy density in the presence of a mean field type perturbation. We extend their results from the product state case to the Gibbs state case in the setting of translation-invariant interactions of finite range. In the special case of a locally faithful quantum Markov state, we clarify the relation between two different kinds of free energy densities (or pressure functions).Comment: 29 pages, Section 5 added, to appear in Rev. Math. Phy

    Typical support and Sanov large deviations of correlated states

    Get PDF
    Discrete stationary classical processes as well as quantum lattice states are asymptotically confined to their respective typical support, the exponential growth rate of which is given by the (maximal ergodic) entropy. In the iid case the distinguishability of typical supports can be asymptotically specified by means of the relative entropy, according to Sanov's theorem. We give an extension to the correlated case, referring to the newly introduced class of HP-states.Comment: 29 pages, no figures, references adde

    A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy II: Convexity and Concavity

    Full text link
    We revisit and prove some convexity inequalities for trace functions conjectured in the earlier part I. The main functional considered is \Phi_{p,q}(A_1,A_2,...,A_m) = (trace((\sum_{j=1}^m A_j^p)^{q/p}))^{1/q} for m positive definite operators A_j. In part I we only considered the case q=1 and proved the concavity of \Phi_{p,1} for 0 < p \leq 1 and the convexity for p=2. We conjectured the convexity of \Phi_{p,1} for 1< p < 2. Here we not only settle the unresolved case of joint convexity for 1 \leq p \leq 2, we are also able to include the parameter q\geq 1 and still retain the convexity. Among other things this leads to a definition of an L^q(L^p) norm for operators when 1 \leq p \leq 2 and a Minkowski inequality for operators on a tensor product of three Hilbert spaces -- which leads to another proof of strong subadditivity of entropy. We also prove convexity/concavity properties of some other, related functionals.Comment: Proof of a conjecture in math/0701352. Revised version replaces earlier draft. 18 pages, late

    Canonical moments and random spectral measures

    Full text link
    We study some connections between the random moment problem and the random matrix theory. A uniform draw in a space of moments can be lifted into the spectral probability measure of the pair (A,e) where A is a random matrix from a classical ensemble and e is a fixed unit vector. This random measure is a weighted sampling among the eigenvalues of A. We also study the large deviations properties of this random measure when the dimension of the matrix grows. The rate function for these large deviations involves the reversed Kullback information.Comment: 32 pages. Revised version accepted for publication in Journal of Theoretical Probabilit

    Quantum Games Entropy

    Full text link
    We propose the study of quantum games from the point of view of quantum information theory and statistical mechanics. Every game can be described by a density operator, the von Neumann entropy and the quantum replicator dynamics. There exists a strong relationship between game theories, information theories and statistical physics. The density operator and entropy are the bonds between these theories. The analysis we propose is based on the properties of entropy, the amount of information that a player can obtain about his opponent and a maximum or minimum entropy criterion. The natural trend of a physical system is to its maximum entropy state. The minimum entropy state is a characteristic of a manipulated system i.e. externally controlled or imposed. There exist tacit rules inside a system that do not need to be specified or clarified and search the system equilibrium under the collective welfare principle. The other rules are imposed over the system when one or many of its members violate this principle and maximize its individual welfare at the expense of the group.Comment: 6 page
    corecore