6 research outputs found
A Search for Correlation of Ultra-High Energy Cosmic Rays with IRAS-PSCz and 2MASS-6dF Galaxies
We study the arrival directions of 69 ultra-high energy cosmic rays (UHECRs)
observed at the Pierre Auger Observatory (PAO) with energies exceeding 55 EeV.
We investigate whether the UHECRs exhibit the anisotropy signal expected if the
primary particles are protons that originate in galaxies in the local universe,
or in sources correlated with these galaxies. We cross-correlate the UHECR
arrival directions with the positions of IRAS-PSCz and 2MASS-6dF galaxies
taking into account particle energy losses during propagation. This is the
first time that the 6dF survey is used in a search for the sources of UHECRs
and the first time that the PSCz survey is used with the full 69 PAO events.
The observed cross-correlation signal is larger for the PAO UHECRs than for 94%
(98%) of realisations from an isotropic distribution when cross-correlated with
the PSCz (6dF). On the other hand the observed cross-correlation signal is
lower than that expected from 85% of realisations, had the UHECRs originated in
galaxies in either survey. The observed cross-correlation signal does exceed
that expected by 50% of the realisations if the UHECRs are randomly deflected
by intervening magnetic fields by 5 degrees or more. We propose a new method of
analysing the expected anisotropy signal, by dividing the predicted UHECR
source distribution into equal predicted flux radial shells, which can help
localise and constrain the properties of UHECR sources. We find that the 69 PAO
events are consistent with isotropy in the nearest of three shells we define,
whereas there is weak evidence for correlation with the predicted source
distribution in the two more distant shells in which the galaxy distribution is
less anisotropic.Comment: 23 pages, version published in JCA
Upper Bounds on the Neutrino-Nucleon Inelastic Cross Section
Extraterrestrial neutrinos can initiate deeply developing air showers, and
those that traverse the atmosphere unscathed may produce cascades in the ice or
water. Up to now, no such events have been observed. This can be translated
into upper limits on the diffuse neutrino flux. On the other hand, the
observation of cosmic rays with primary energies > 10^{10} GeV suggests that
there is a guaranteed flux of cosmogenic neutrinos, arising from the decay of
charged pions (and their muon daughters) produced in proton interactions with
the cosmic microwave background. In this work, armed with these cosmogenic
neutrinos and the increased exposure of neutrino telescopes we bring up-to-date
model-independent upper bounds on the neutrino-nucleon inelastic cross section.
Uncertainties in the cosmogenic neutrino flux are discussed and taken into
account in our analysis. The prospects for improving these bounds with the
Pierre Auger Observatory are also estimated. The unprecedented statistics to be
collected by this experiment in 6 yr of operation will probe the
neutrino-nucleon inelastic cross section at the level of Standard Model
predictions.Comment: To be published in JCA